Data-driven multiscale modeling of subgrid parameterizations in climate models

Karl Otness, Laure Zanna, and Joan Bruna

Introduction

- Climate models help project climate change impacts
- Coarsened resolution impacts model accuracy
- Closure models are added to reflect missing processes

- Active area of research
- Many approaches have been tested
 - Including deep learning methods
- We test an approach decomposing the task across scales

Two-Layer Quasi-Geostrophic Model

- Testbed model used in our experiments
- Based on PyQG (https://github.com/pyqg/pyqg)
 - Ported to the JAX framework
- Tracks the evolution of potential vorticity, q
 - Two layers, periodic boundary conditions

Subgrid Parameterizations

Multiscale Subgrid Parameterizations

Subgrid Forcing Prediction

- We generate 100 trajectories for training
- Each with 10,800 steps

- We use two network architectures:
 - Small: Kernels of size 3x3 and 5x5
 - Large: Kernels of size 5x5 and 9x9

Experiments

Three types of experiments:

- 1. Downscale prediction
 - Predict a coarse version of the target output
- 2. Upscale prediction
 - Upscale the coarse prediction to the required resolution
- 3. Combined prediction
 - Use both networks to make a full prediction

Downward Prediction

Upward Prediction

Downscaling Experiments

Upscaling Experiments

Combined Prediction

Future Work

First steps in an ongoing project

- Online evaluation
- Test on additional climate tasks
- Investigate regularization benefits
- Improvements to model architecture

Resources

Extended arXiv Preprint

>_

JAX Quasi-Geostrophic Model

https://arxiv.org/abs/2303.17496

https://github.com/karlotness/pyqg-jax

