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Introduction

* Climate models help project climate change impacts
* Coarsened resolution impacts model accuracy
* Closure models are added to reflect missing processes

 Active area of research

* Many approaches have been tested
* Including deep learning methods

* We test an approach decomposing the task across scales



Two-Layer Quasi-Geostrophic Model

* Testbed model used in our experiments

* Based on PyQG (https://github.com/pyag/pyag)
e Ported to the JAX framework

* Tracks the evolution of potential vorticity, g
* Two layers, periodic boundary conditions
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https://github.com/pyqg/pyqg

Subgrid Parameterizations
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Multiscale Subgrid Parameterizations
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Subgrid Forcing Prediction

* We generate 100 trajectories for training
e Each with 10,800 steps

 We use two network architectures:
* Small: Kernels of size 3x3 and 5x5
* Large: Kernels of size 5x5 and 9x9



Experiments

Three types of experiments:

1. Downscale prediction
* Predict a coarse version of the target output

2. Upscale prediction
* Upscale the coarse prediction to the required resolution

3. Combined prediction
* Use both networks to make a full prediction




Downward Prediction
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Upward Prediction
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Downscaling Experiments
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Upscaling Experiments
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Combined Prediction
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Future Work

First steps in an ongoing project

* Online evaluation

* Test on additional climate tasks

* Investigate regularization benefits

* Improvements to model architecture



Resources

Extended arXiv Preprint JAX Quasi-Geostrophic Model

https://arxiv.org/abs/2303.17496 https://github.com/karlotness/pyqg-jax

[=] ¥ ! [m]
=] 25



https://arxiv.org/abs/2303.17496
https://github.com/karlotness/pyqg-jax
https://arxiv.org/abs/2303.17496
https://github.com/karlotness/pyqg-jax

	Slide 1: Data-driven multiscale modeling of subgrid parameterizations in climate models
	Slide 2: Introduction
	Slide 3: Two-Layer Quasi-Geostrophic Model
	Slide 4: Subgrid Parameterizations
	Slide 5: Multiscale Subgrid Parameterizations
	Slide 6: Subgrid Forcing Prediction
	Slide 7: Experiments
	Slide 8: Downward Prediction
	Slide 9: Upward Prediction
	Slide 10: Downscaling Experiments
	Slide 11: Upscaling Experiments
	Slide 12: Combined Prediction
	Slide 14: Future Work
	Slide 15: Resources

