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ABSTRACT

Running climate simulations informs us of future climate change. However, it
is computationally expensive to resolve complex climate processes numerically.
As one way to speed up climate simulations, neural networks have been used to
downscale climate variables from fast-running low-resolution simulations. So far,
all neural network downscaling models can only downscale input samples with a
pre-defined upsampling factor. In this work, we propose a Fourier neural opera-
tor downscaling model. It trains with data of a small upsampling factor and then
can zero-shot downscale its input to arbitrary unseen high-resolutions. Evaluated
on Navier-Stokes equation solution data and ERA5 water content data, our down-
scaling model demonstrates better performance than widely used convolutional
and adversarial generative super-resolution models in both learned and zero-shot
downscaling. Our model’s performance is further boosted when a constraint layer
is applied. In the end, we show that by combining our downscaling model with
a low-resolution numerical PDE solver, the downscaled solution outperforms the
solution of the state-of-the-art high-resolution data-driven solver. Our model can
be used to cheaply and accurately generate arbitrarily high-resolution climate sim-
ulation data with fast-running low-resolution simulation as input.

1 INTRODUCTION

Climate simulations are running hundreds of years ahead to help us understand how climate changes
in the future. Complex physical processes inside climate dynamic systems are captured by partial
differential equations (PDEs), which are extremely expensive to solve numerically. As a result, run-
ning a long-term high-resolution climate simulation is still not feasible within the foreseeable future
(Balaji, 2021), even with the current fast-increasing computational power. Given the fast forward
inference speed of neural networks, deep learning was applied to speed up climate simulations.

Climate simulations at low resolution are much cheaper to run than at high resolution. Therefore,
there are attempts to use network networks to generate high-resolution climate variables out of their
low-resolution counterpart. Such a process is named downscaling in climate science community (or
super-resolution in machine learning community). Höhlein et al. (2020) used convolutional neu-
ral networks (CNNs) to downscale short-range forecasts of near-surface wind fields. A conditional
generative adversarial network (GAN) was trained by Price & Rasp (2022) via a custom training
procedure and augmented loss function to downscale precipitation forecasts. Groenke et al. (2020)
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proposed the first unsupervised statistical downscaling method based on normalizing flows to in-
crease the resolution of temperature and precipitation data.

Limited by classic neural networks, which map between finite-dimensional spaces, all neural net-
work downscaling models so far have fixed input and output sizes. For a single trained model, it can
only downscale input samples with a pre-defined upsampling factor. Inspired by the recent success
of Fourier neural operator (Li et al., 2021, FNO) of solving PDEs regardless of resolution, we design
a novel FNO zero-shot downscaling model which is able to downscale input samples to arbitrary un-
seen high resolution with training only once on data of a small upsampling factor. Experiments on
Navier-Stokes solution data and ERA5 reanalysis (Hersbach et al., 2020) water content data show
that our model achieves great performance not only on the learned downscaling (i.e., the model is
trained on) tasks but also on zero-shot downscaling (i.e., the model is not trained on) tasks. The per-
formance is even further improved when a softmax constraint layer (Harder et al., 2022) is stacked
at the end of our model architecture to enforce conservation laws. Using our model to downscale
low-resolution solution from a numerical Navier-Stokes equation solver, the downscaled solution
obtains significantly higher accuracy than that from an FNO equation solver—one of the state-of-
the-art data-driven solvers. These results validate our model’s potential to cheaply and accurately
generate arbitrarily high-resolution climate simulation with fast-running low-resolution simulation
as input.

2 METHODOLOGY

2.1 PROBLEM SETUP

Consider low-resolution input a ∈ Rda and high-resolution output b ∈ Rdb with da < db. So far,
neural network downscaling models are looking for a mapping f : Rda → Rdb from low-resolution
input a to high-resolution output b. This formulation induces a limitation where the downscaled
output resolution is fixed to be db. We propose the following formulation to relax this limitation to
achieve arbitrary resolution downscaling.

Instead of looking for a mapping between two finite-dimensional spaces, our methodology learns
a mapping from a finite-dimensional space to an infinite-dimensional space. Namely, this mapping
takes in low-resolution input a ∈ Rda and outputs a function u ∈ U of which high-resolution
observation b is a discretization. We denote this mapping as: G† : Rda → U , where U = U(D;Rdu)
is a Banach space of functions taking values in Rdu at each point from a bounded open set D ⊂ Rd.
As a result, arbitrarily high-resolution outputs can be obtained by evaluating u at arbitrarily many
points from D.

Suppose we have observations {aj ,uj}Nj=1, where aj is an i.i.d. low-resolution sample and uj =

G†(aj) is possibly corrupted with some random noise. We aim to construct a parametric map as
follows to approximate G†:

G : Rda ×Θ → U or equivalently, Gθ : Rda → U , θ ∈ Θ, (1)

where Θ is a finite-dimensional parameter space. We hope to find a θ† ∈ Θ such that G(a, θ†) =
Gθ†(a) is close to G†(a). It can be formulated as an optimization problem:

θ† = argmin
θ∈Θ

Ea[C(G(a, θ), G†(a))], (2)

where C : U × U → R is a cost functional measuring the distance in U .

2.2 IMPLEMENTATION

Here we construct Gθ as the following:

Gθ(a) := Fθ(I(fθ(a))). (3)

fθ : Rda → Rd is a vector-valued function parameterized by a neural network. I : Rd → E(D;Rde)
is an interpolation operator, which interpolates the output of fθ as a function e ∈ E over domain
D. Fθ : E → U is a functional operator parameterized by a neural operator (Li et al., 2020). In
particular, I can be a very simple interpolation scheme (e.g. linear interpolation) without hurting
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the expressiveness of the overall model Gθ. There are two reasons for it. First, fθ is able to learn an
embedding with a high channel dimension such that the simple interpolation of it retains rather high
expressiveness for the target with a low channel dimension. Second, Fθ can learn highly non-linear
operators to apply complicated transformations to interpolated function e = I(fθ(a)) despite of the
simple components of Fθ (Li et al., 2021).

In this work, fθ is represented by a residual convolutional network inspired by the generator ar-
chitecture of a widely used super-resolution GAN (Wang et al., 2018); an FNO is implemented for
Fθ; and cubic interpolation is used as I . Figure 1(a) shows an illustration of the overall structure
of our proposed Fourier neural operator downscaling (DFNO) model denoted by Gθ. The detailed
architecture of neural network fθ is pictured in Figure 1(b). As for the FNO architecture for Fθ, it
is specified in the paper by Li et al. (2021).

a Neural Network Interpolation e(x) Neural Operator u(x)

(a)

(b)

C
on

v

C
on

v

R
el

u

C
on

v

C
on

v

C
on

v

R
el

u

C
on

v
Figure 1: The upper panel shows the overall structure of our Fourier neural operator downscaling
model denoted by Gθ. The low-resolution input a goes through a neural network fθ and an inter-
polation operator I . Then an embedding function e(x) over domain D is returned. Finally, a neural
operator Fθ takes in e(x) and outputs the target function u(x) which interpolates the high-resolution
observation of a. The lower panel shows the detailed architecture of fθ. It starts and ends with a
convolutional layer. In the middle, it is composed of a series of convolutional residual blocks.

3 EXPERIMENTS

3.1 DOWNSCALE PDE DATA

2D Navier-Stokes equation for a viscous and incompressible fluid in vorticity form is solved to con-
struct our PDE dataset. The equation was numerically solved 10000 times with randomly sampled
initial conditions at resolution 64 × 64. Each solution was integrated for 50 time steps with a vis-
cosity of 10−4. Out of 10000 solutions, 7000, 2000, and 1000 solutions were sampled as training,
validation, and test sets. Solutions at each time step were then downsampled via average pooling to
resolution 32× 32 and 16× 16. It forms our PDE downscaling dataset. Following implementation
details specified in Section 2.2, a DFNO was constructed. It was trained on the PDE downscaling
dataset of upsampling factor 2 (i.e., 16× 16 → 32× 32) and then evaluated at 2 times and 4 times
downscaling. Two CNN and two GAN downscaling models with pre-defined upsampling factors
2 and 4 were developed to form baselines. They were trained on datasets of their corresponding
upsampling factors, and outputs were then resampled via cubic interpolation to achieve desired res-
olution for evaluation. The downscaling performance of all models is summarized in Table 1. To
our surprise, DFNO performs worse on reconstructing inputs than downscaling inputs. However, it
is not a major issue because downscaling models are intended to increase input resolution. For 2
times downscaling on which DFNO was trained, DFNO shows dominant performance over baseline
models in all evaluation metrics. This performance advantage persists when it comes to zero-shot
(4 times) downscaling, winning models directly trained on 4 times downscaling dataset. Table 2
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collects model downscaling performance with softmax constraint layer (Harder et al., 2022) applied
to enforce conservation laws. The constraint layer further improves DFNO’s skill and eliminates its
reconstruction error. One PDE solution downscaling example by our constrained DFNO model is
presented in Figure 2.

3.2 DOWNSCALE ERA5 DATA

The ERA5 dataset (Hersbach et al., 2020) is a reanalysis product from the European Center for
Medium-Range Weather Forecast (ECMWF) that combines model data with worldwide observa-
tions. For this work, one quantity we focus on is the total column water that describes the vertical
integral of the total amount of atmospheric water content, including water vapor, cloud water, and
cloud ice but not precipitation. We extract a random 128× 128 patch from the global water content
field of size 721 × 1440 at each time step. There are roughly 60,000 time steps available in total.
Then 40,000 patches are randomly sampled for training and 10,000 for each validation and testing.
The low-resolution counterparts are created by taking average pooling on high-resolution samples
following the standard practice as in Serifi et al. (2021); Leinonen et al. (2021). It results in low-
resolution samples of sizes 32×32 and 64×64. Like the previous section, a DFNO model is trained
with 2 times downscaling data and tested at 1 time, 2 times, and 4 times downscaling. Its perfor-
mance is also compared against two CNN and two GAN downscaling models of upsampling factors
2 and 4. The downscaling performance of all models is collected in Table 3 (without constraint
layer) and Table 4 (with constraint layer). Still, DFNO shows better performance on downscaling
inputs than on reconstructing inputs. In learned downscaling, DFNO has the highest skill among
all baseline models. For zero-shot downscaling, MAE score of DFNO is slightly worse than that
of baseline CNN-4 and GAN-2. When the constraint layer is applied, DFNO shows dominant per-
formance in both learned and zero-shot downscaling. Figure 3 illustrates a case study on DFNO
downscaling ERA5 water content data.

3.3 DOWNSCALE FOR PDE INTEGRATION

This section compares two ways of integrating PDE at high resolution. The first way is to solve
PDE numerically at low resolution, then downscale the solution to a higher resolution. The second
way is using data-driven models to predict solutions at high resolution auto-regressively. Here we
use the Navier-Stokes equation from Section 3.1 as an example. Two constrained DFNO models are
implemented to downscale PDE solutions at resolution 16×16. These two DFNO models are trained
with 2 times and 4 times PDE downscaling data and denoted as DFNO-2 and DFNO-4, respectively.
On the other hand, as for the data-driven solver, two FNO models are developed, which predict a
solution one time step forward based on the solution at the previous ten time steps. They are trained
with solution data at resolution 32 × 32 and 64 × 64, denoted as FFNO-32 and FFNO-64. Both
of them are then evaluated at resolution 32 × 32 and 64 × 64. The solutions generated by DFNO
and FFNO models are compared against ground truth numerical solutions, and the performance is
summarized in Table 5. Overall, DFNO models show a significant performance advantage over
FFNO models. Comparing between DFNO models, zero-shot downscaling is still not as good as
learned downscaling. Solution examples generated by FFNO-64 and DFNO-2 at resolution 64× 64
for five consecutive time steps are presented in Figures 4 and 5.

4 CONCLUSION

In this study, we design the first arbitrary resolution downscaling model for climate data using
Fourier neural operator. This model is evaluated on a Navier-Stokes equation solution dataset and
an ERA5 reanalysis water content dataset. We show that our model improves performance on both
datasets relative to widely used CNN and GAN super-resolution architectures. It also generalizes the
learned downscaling pattern to a higher upsampling factor task achieving great zero-shot downscal-
ing performance even dominating CNN and GAN models directly trained on this task. In addition,
our model’s performance is further boosted when a softmax constraint layer is applied to enforce
conservation laws. In the end, we compare two ways to integrate PDE at high-resolution. Com-
bining our downscaling model with a low-resolution numerical solver, the downscaled solution has
superior accuracy to that of the state-of-the-art high-resolution data-driven solver. The good per-
formance demonstrated by our model on climate data may result from the fact that climate data are
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all very smooth without high-frequency Fourier components. It means those data have a succinct
representation in Fourier basis and thus can be easily captured by Fourier neural operator with a
truncated Fourier series. It would be interesting to explore how to modify our model to adapt to data
without a succinct Fourier representation.
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Table 1: Downscaling performance on the PDE dataset in terms of mean squared error (MSE), mean
absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure
(SSIM). The best scores are highlighted in bold red, second best in bold blue. The DFNO model
was trained on 2 times downscaling data, then tested on 1 time, 2 times, and 4 times downscaling.
CNN-2 (GAN-2) and CNN-4 (GAN-2) represent convolutional (generative adversarial) downscal-
ing models with predefined upsampling factors 2 and 4. They were trained on datasets of their
corresponding upsampling factors, whose downscaling results are then downsampled or upsampled
via cubic interpolation to get desired resolution for evaluation.

Metric Factor DFNO CNN-2 CNN-4 GAN-2 GAN-4 Cubic

MSE 1× 0.0146 0.0057 0.0123 0.0056 0.0131 0.0000
MSE 2× 0.0015 0.0043 0.0052 0.0045 0.0062 0.0252
MSE 4× 0.0037 0.0093 0.0070 0.0095 0.0080 0.0350

MAE 1× 0.0826 0.0524 0.0697 0.0520 0.0746 0.0000
MAE 2× 0.0238 0.0397 0.0458 0.0424 0.0534 0.1027
MAE 4× 0.0359 0.0579 0.0495 0.0601 0.0573 0.1150

PSNR 1× 40.2750 44.3504 41.0302 44.4541 40.7810 154.0983
PSNR 2× 50.2061 45.7778 44.8762 45.5806 44.2337 38.0326
PSNR 4× 46.3361 42.4054 43.6083 42.3192 43.1123 36.6248

SSIM 1× 0.9934 0.9968 0.9935 0.9963 0.9890 1.0000
SSIM 2× 0.9981 0.9962 0.9952 0.9956 0.9917 0.9741
SSIM 4× 0.9920 0.9842 0.9879 0.9835 0.9846 0.9335

Table 2: Similar to Table 1 but softmax constraint layer is applied to the output of each model.

Metric Factor DFNO CNN-2 CNN-4 GAN-2 GAN-4 Cubic

MSE 1× 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MSE 2× 0.0011 0.0038 0.0063 0.0038 0.0084 0.0365
MSE 4× 0.0029 0.0217 0.0063 0.0228 0.0064 0.0517

MAE 1× 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MAE 2× 0.0196 0.0363 0.0528 0.0365 0.0627 0.1241
MAE 4× 0.0313 0.1032 0.0457 0.1058 0.0461 0.1431

PSNR 1× 151.8861 153.3908 152.4238 153.3476 152.1304 152.4239
PSNR 2× 51.8071 46.2719 44.2463 46.2266 43.0041 36.4336
PSNR 4× 47.4375 38.7146 44.1036 38.5096 44.0425 34.9377

SSIM 1× 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SSIM 2× 0.9987 0.9969 0.9942 0.9969 0.9920 0.9659
SSIM 4× 0.9937 0.9605 0.9894 0.9583 0.9892 0.9108
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Table 3: Downscaling performance on the ERA5 water content dataset in terms of mean squared er-
ror (MSE), mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity
index measure (SSIM). The best scores are highlighted in bold red, second best in bold blue. The
DFNO model was trained on 2 times downscaling data, then tested on 1 time, 2 times, and 4 times
downscaling. CNN-2 (GAN-2) and CNN-4 (GAN-2) represent convolutional (generative adversar-
ial) downscaling models with predefined upsampling factors 2 and 4. They were trained on datasets
of their corresponding upsampling factors, whose downscaling results are then downsampled or
upsampled via cubic interpolation to get desired resolution for evaluation.

Metric Factor DFNO CNN-2 CNN-4 GAN-2 GAN-4 Cubic

MSE 1× 0.2140 0.0940 0.1566 0.0930 0.1752 0.0000
MSE 2× 0.2063 0.2489 0.2677 0.2474 0.2815 0.4201
MSE 4× 0.3628 0.3870 0.3851 0.3853 0.3971 0.5954

MAE 1× 0.2896 0.1737 0.2149 0.1731 0.2439 0.0000
MAE 2× 0.2392 0.2541 0.2668 0.2542 0.2920 0.3380
MAE 4× 0.3067 0.3023 0.3009 0.3022 0.3251 0.3838

PSNR 1× 46.9630 50.5294 48.3152 50.5795 47.8863 173.5160
PSNR 2× 48.1002 47.2861 46.9688 47.3111 46.7714 45.0115
PSNR 4× 46.0154 45.7349 45.7561 45.7535 45.6330 43.8633

SSIM 1× 0.9964 0.9982 0.9971 0.9982 0.9971 1.0000
SSIM 2× 0.9941 0.9933 0.9933 0.9934 0.9932 0.9891
SSIM 4× 0.9895 0.9882 0.9887 0.9884 0.9888 0.9835

Table 4: Similar to Table 3 but softmax constraint layer is applied to the output of each model.

Metric Factor DFNO CNN-2 CNN-4 GAN-2 GAN-4 Cubic

MSE 1× 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MSE 2× 0.1696 0.2181 0.2896 0.2181 0.2964 0.8314
MSE 4× 0.2779 0.6054 0.3334 0.6118 0.3355 1.1552

MAE 1× 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MAE 2× 0.2250 0.2427 0.3055 0.2422 0.3116 0.5318
MAE 4× 0.2768 0.4383 0.2838 0.4386 0.2851 0.5950

PSNR 1× 164.1793 170.2039 166.2301 169.6977 165.4083 161.0459
PSNR 2× 48.9508 47.8585 46.6269 47.8585 46.5268 42.0471
PSNR 4× 47.1723 43.7915 46.3821 43.7464 46.3550 40.9850

SSIM 1× 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SSIM 2× 0.9952 0.9937 0.9919 0.9938 0.9917 0.9778
SSIM 4× 0.9910 0.9792 0.9893 0.9793 0.9892 0.9639

Table 5: This table compares two ways of solving the Navier-Stokes equation at high resolution
concerning mean squared error (MSE) and mean absolute error (MAE). First way: solve the equation
numerically at low resolution (16 × 16); then downscale the solution to 32 × 32 and 64 × 64 by
constrained DFNO models. Second way: use data-driven FFNO models to auto-regressively predict
solutions at resolutions 32× 32 and 64× 64.

Metric Resolution DFNO-2 DFNO-4 FFNO-32 FFNO-64

MSE 32× 32 0.0004 0.0012 0.0101 0.0113
MSE 64× 64 0.0018 0.0007 0.0136 0.0118

MAE 32× 32 0.0124 0.0208 0.0677 0.0725
MAE 64× 64 0.0246 0.0168 0.0788 0.0739
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Figure 2: This figure shows the downscaling performance of our DFNO model with softmax con-
straint layer on the PDE solution data. The DFNO model was trained with 2 times downscaling
data, then evaluated at 1 time (row 1), 2 times (row 2), and 4 times (row 3) downscaling. Column 1
shows the outputs from our DFNO model; column 2 is the numerical solution ground truth; and the
difference between truth and prediction is presented in column 3.
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Figure 3: This figure shows the downscaling performance of our DFNO model with softmax con-
straint layer on ERA5 water content data. The DFNO model was trained with 2 times downscaling
data, then evaluated at 1 time (row 1), 2 times (row 2), and 4 times (row 3) downscaling. Column 1
shows the outputs from our DFNO model; column 2 is the ground truth; and the difference between
truth and prediction is presented in column 3.
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Figure 4: This figure shows Navier-Stokes equation solution (64 × 64) at five consecutive time
steps (row 1 to row 5). The solution is generated by FFNO-64, a forward solution prediction model
trained on a solution dataset of resolution 64 × 64. Column 1 shows FFNO-64 predicted solution;
column 2 is the numerical solution ground truth; column 3 shows the difference between column 1
and column 2.
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Figure 5: Similar to Figure 4 but the solution is generated by DFNO-2. It is a constrained DFNO
model trained on solution downscaling data from 16 × 16 to 32 × 32. It performs zero-shot down-
scaling on a solution from 16× 16 to 64× 64.
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