
Published as a workshop paper at "Tackling Climate Change with Machine Learning", ICLR 2023

ROBUSTLY MODELING THE NONLINEAR IMPACT OF
CLIMATE CHANGE ON AGRICULTURE BY COMBINING
ECONOMETRICS AND MACHINE LEARNING

Benedetta Francesconi
Vrije Universiteit Amsterdam, NL
benedetta.francesconi.1993@gmail.com

Ying-Jung C. Deweese
Descartes Labs & Georgia Institute of Technology, US
yingjungcd@gmail.com

ABSTRACT

Climate change is expected to have a dramatic impact on agricultural pro-
duction; however, due to natural complexity, the exact avenues and relative
strengths by which this will happen are still unknown. The development of
accurate forecastingmodels is thus of great importance to enable policymak-
ers to design effective interventions. To date, most machine learning meth-
ods aimed at tackling this problem lack a consideration of causal structure,
thereby making them unreliable for the types of counterfactual analysis nec-
essary when making policy decisions. Econometrics has developed robust
techniques for estimating cause-effect relations in time-series, specifically
through the use of cointegration analysis and Granger causality. However,
these methods are frequently limited in flexibility, especially in the estima-
tion of nonlinear relationships. In this work, we propose to integrate the non-
linear function approximators with the robust causal estimation methods to
ultimately develop an accurate agricultural forecasting model capable of ro-
bust counterfactual analysis. This method would be a valuable new asset for
government and industrial stakeholders to understand how climate change
impacts agricultural production.

1 INTRODUCTION

FIGURE 1: Annual temperature change and
annual vegetables yield in Italy

The climate system is becoming more extreme, with
an increase of heavy precipitation events and long
dry spells [14]. Such drastic changes in weather
events will inevitably have a significant impact on
cropyield. Theprecise effect ofdifferent climate vari-
ables on yield is complicated due to known variation
among plant types and intricate unknown causal
structures [13, 8, 10]. For instance, a naïve correla-
tional analysis of Figure 1 shows increasing temper-
ature to increase vegetable production, as they both
have steadily increased in the last 50 years. However,
this first impression can be misleading.

FIGURE 2: Cmay bias
the estimated rela-
tions between T & Y.

Figure 2 is an illustration of the potential problematic causal graph, de-
picting an unobserved causal effect. If we consider temperature (T),
yield (Y) and a third variable (C) (potentially population or pollution),
it can be the case that C acts causally on both temperature and yield,
thereby confounding initial estimates of how temperature may impact
yield. A mistaken causal estimation would have significant negative im-
pact for policy decisions. Indeed, confounders in the climate science liter-
ature have lead tomisleading correlations [28]. Thus, accurately assessing
the causal effects of climate change on agricultural production is critical for correctly form-
ing climate change adaptation and mitigation policies. In prior work, researchers in econo-
metrics and machine learning have examined the effects of climate change on agriculture
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[11, 7, 16, 18, 26, 15, 29]; however these approaches have yet to capture the causal influence
of environmental and socioeconomic variables on agriculture.

In this work, we propose to couple the econometric techniques of cointegration analysis and
Granger causality withmachine learning, thereby combining the robust econometric methods
of causal discovery with the nonlinear modeling capacity of machine learning. We propose to
apply this method to assess the effects of climate change on agricultural production, which,
to the best of our knowledge, has not been done before in the literature. The contributionos
of this proposal are: (i) the application of powerful nonlinear causal analysis to a new agri-
culture dataset, and (ii) the improved robustness of these causal methods through the use of
cointegration analysis.

2 PRIOR WORK
In econometrics, importance is given to the techniques of cointegration and the estimation
of Vector Error Correction Models (VECM) [17, 5] or Generalized Autoregressive Conditional
Heteroskedasticity (GARCH)models [22]; however, suchmodels comewith several known lim-
itations [21]. For example, cointegration tests are not flexible enough to handle nonlinear re-
lations, and in general make use of basic statistical models, thereby lacking a consideration
causality by default [24]. Despite this, cointegration methods are useful to robustly unveil hid-
den relations between seemingly unrelated variables. Moreover, such statistical models are re-
liable only if the initial conditions and assumptions of the models do not change. As we are
working with factors in climate system that have been changing over last decades, the initial
conditions have been changing throughout time. On the other hand, machine learningmodels
are also usually not able to detect causality between variables. Traditionally machine learning
models focus on prediction, but not on causality detection.

3 APPROACH
Methodology We propose an approach where the econometric tests of cointegration and
Granger causation are coupled with deep autoregressive model (DeepAR) and expanded
through a counterfactual analysis. In causal inference, counterfactual analysis allows one to
uncover cause and effects mechanisms between variables. This is possible because the same
model is estimated first with the original variables and then it is estimated again without in-
cluding those same variables. The differences in the two estimations allow us to establish the
presence of a causal relation. DeepAR, Granger causality and counterfactural analysis have al-
ready been used in combination together, but without performing a preliminary cointegration
analysis [6]. We propose to expand the work in [6] by performing cointegration tests before
working with Granger causality and DeepAR. The presence of cointegration is essential for two
or more variables to be involved in a Granger causality relation [19]. In absence of cointegra-
tion, the relation between the variablesmight not exist. As a further differencewith the study of
[6], we propose to model the impact of climate change on agricultural data. The climate vari-
ables used in this study are: precipitation, temperature, wind and radiation flux. Soil moisture
is also included, while the target variable will be agricultural production. The ultimate goal is to
assess the presence of causal effects of the mentioned climatic variables or soil moisture over
crops yield.

In our approach, the first step involves the application of several cointegration techniques: Jo-
hansen cointegration, threshold cointegration and time-varying cointegration. Cointegration
signals the presence of a linear relation between variables seemingly unrelated. When present,
it can have a time-varying or time-invariant nature or appear only at specific periods. If a coin-
tegration relation is found, then a Granger causality test can be performed. Granger causality
allows to understand if certain variables can be useful to predict the value of another variable.
Granger casuality only confirms that the inclusion of a variable improves the forecasting of an-
other variable. Also, Granger causality test can deal only with stationary and linear models.
Assuming that climatic variables and crops yield are linearly related is an unrealistic limita-
tion. For this reason, in our approach the Granger causality test will not be performed using a
Vector Autoregressive (VAR) model, as it is standard practice, but rather a deep autoregressive
model (DeepAR) [27]. TheDeepARmodel is chosenas it is able todealwithnon-linear andnon-
stationary time series, better fitting the assumptions of the variables at hand. Themodel is also
able to extract hidden features in the data, such as seasonality or other hidden patterns. Given
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the seasonality of climatic phenomena and potentially climate change related trends observed
in the last decades, such a powerful model will be better suited to identify hidden variables
which cannot be observed from the data.

In order to establish if climatic variables or soil have causal effects over crops yield we will use
knockoffs [12]. Knockoffs are variables that will have the same distribution as the original cli-
matic and soil variables, but that will be independent of the model output. This means that
the knockoffs are generated such that they have no causal relation on the crops yield. In order
to assess causality, the DeepAR model will be estimated both using the original climatic and
soil variables and then by using the knockoff variables. The two DeepAR models will then be
compared following the procedures of the Granger causality test: if significant differences are
found between the twomodel estimations, thenwe can conclude that the original independent
variables have a causal effect over crops yield. If no differences are measured, then we cannot
conclude that our climatic or soil variables cause effects over crops yield. To validate the above
procedure, we first propose the use of a synthetic dataset where the causal relations between
the variables are already known. We can then measure the agreement of the causal relations
and strengths estimated from the above procedure with the true causal structure to evaluate
the strength of the approach. It will be thenpossible to quantitativelymeasure the increased ro-
bustness induced by our proposed introduction of cointegration analysis. Following thismodel
validation, we propose to apply these innovative techniques to the agricultural dataset outlined
below, thereby providing a realistic case-study for the proposed method.

Data We propose to use the average monthly temperature and the average monthly precipi-
tation data from the NOAA dataset [1]. This dataset provides data from 1895 until 2022, at the
5x5 lat/lon scale. For wind data, we will use the NOAA dataset [2] spanning from 1979 to 2022
at a 1.9x1.9 resolution level. From NOAA we will also obtain the data relative to soil moisture
[3], available from 1948 until 2022 at a 0.5x0.5 spatial resolution level and data relative to radi-
ation flux (shortwave and longwave) [4], available from 1979 to 2022 at a 0.3 degrees resolution
level. The crops data will require additional manipulation. Monthly crops data are extremely
rare and the dataset that is usually used, the MIRCA2000, has data only until the year 2000. For
this reason, we will create the necessary data using the approach specified in [20]. The authors
propose amethodology based on using publicly available data from the FAOSTAT database and
theGAEZVersion 4 global griddeddataset. Through them, they generate circa 2015 annual crop
harvested area, production, and yields by crop production system (irrigated and rainfed) for 26
crops and crop categories globally at 5-minute resolution. Wewill replicate the approach of the
authors to generate data for also all the years before 2015 up to 1979 and for those after 2015
until 2022. In this way we will be able to use a dataset of variables spanning from 1979 to 2022,
which is the timespan common among all different data sources. Since the selected data in this
work are at different resolution, we will upsample these data and aggregate data at the county
level. The counties under consideration will be those of California, US.

4 LIMITATIONS
Our proposal has some limitations, mainly related to the dataset to be used. The main limita-
tion is that agricultural production is not solely influenced by climate, even when this plays a
big role. Other phenomena such as technological advancements, production techniques and
shocks provoked by wars just to name a few have a non negligible influence. These variables
are all extremely hard to capture. For this reason, the risk of an incorrect estimation of the
relation between the variables persists. In future work, we may consider the introduction of
instrumental-variables as a method to handle such unobserved confounders [25, 23].

5 CONCLUSION
Models of climate change’s effect on agricultural production are currently lacking a fundamen-
tal component – the estimationof causal relationships. Despite the researchdone in economet-
rics and machine learning, there is still little importance given to the analysis of causal effects
between the variables involved. Through this work, we suggest a new approach which inte-
grates econometric and machine learning methods to robustly estimate causal relationships,
and propose to apply thismodel to agricultural data for the first time. As a result, we believe this
model and proposed experimental validation would offers a reliable new technique, providing
guidance for policy-making decisions among government agencies and industries.
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6 APPENDIX
6.1 COINTEGRATION
6.1.1 JOHANSEN COINTEGRATION
A general Vector Autoregressive model (VAR) with Gaussian errors can be written in the Error
Correction Model (ECM) form as:

∆Yt =
p−1∑
i=1
Γi∆Yt−i +ΠYt−p +ΦD t +µ+ϵt (1)

where Yt is the vector of the time-series in consideration. In the problem exposed in this work,
it is constituted by the variables in consideration, such as: wind, soil moisture, temperature,
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precipitation, and the target yield. ∆Yt = Yt −Yt−1 is a vector in Rk , D t is a vector of seasonal
dummy variables orthogonal to the constant term µ, Φ is the coefficients of the D t variables,
ϵt ∼ Nk (0,Λ) represents the Gaussian errors, Γi and Π = αβT ∈ Rk×k , where α ∈ Rk×r and β ∈
Rk×r . The considered total lags back in time is indicated by p.

The Johansen appoach is based on the analysis of the rank of the Πmatrix, which is called the
impactmatrix andwhere r represents themaximumnumberof independent vectorswithin this
matrix. If the rank r = 0, the Πmatrix would collapse and so the error correction term would
disappear, meaning that there is no long term relationship between the variables involved. On
the other hand, if the rank is 0 < r < k, then the variables are said to be cointegrated; if r = k,
then Π is a full rank matrix and the variables are all linearly independent. In the first and last
case no cointegration can be devised.

Given a stationary ∆Yt and a nonstationary Yt , if there exists a β matrix such that the linear
combination between them in the form of βT Yt is stationary, then the elements in Yt and ∆Yt
are said to be cointegrated. The space spanned by β is the space spanned by the rows of Π and
it represents the cointegrating space, while α is the adjustement coefficient, as in the work by
Agunloye et al. (2014). In order to infer the number of r cointegrating vectors and their signifi-
cance, the Johansen approach proposes two tests, the trace test and themaximum eigenvalues
test.

6.1.2 THRESHOLD COINTEGRATION
The threshold cointegrationmethodology proposed in thiswork spans from the ones presented
by Balke and Fomby (1997) to those of Hansen and Seo (2002). Given two variables that are sus-
pected of being cointegrated and characterised by an Error Correction Model (ECM), it is as-
sumed that the cointegrating relationship (and so the tendency to move towards the long-run
equilibrium) is not present at each time t but instead takes place onlywhen the equilibriumbe-
tween the variables involved trespasses one ormore threshold levels. To illustrate this concept,
Balke and Fomby (1997) make use of a bivariate model of the type:{

yt +αxt = zt where zt = ρ(i )zt−1 +ϵt .

yt +βxt = Bt where Bt = Bt−1 +ηt .
(2)

where both ϵt and ηt are iid random variables with mean 0. The first equation in the system
represents the equilibrium relationship between yt and xt , with zt called the equilibrium error
and being the deviation from the equilibrium level and (1,α) the cointegrating vector; the Bt
equation represents instead the common stochastic trend of yt and xt .

Any departure from the equilibrium zt is supposed to follow a threshold autoregression as spec-
ified above (zt = ρ(i )zt−1 +ϵt ), where:{

ρ(i ) = 1 if |zt−1| ≤ θ.

ρ(i ) = ρ, if |zt−1| > θ.
(3)

where θ represents a critical threshold. As long as the equilibrium value is within the threshold
level, the system does not mean revert towards the equilibrium level but as soon as the thresh-
old level is surpassed, the cointegration relation takes place and the system drifts back to the
equilibrium level. In the words of Engle and Granger (1987), "while locally zt may have a unit
root, globally this series is stationary". In case there aremultiple threshold levels, their distance
will also influence the long-termdynamics of the system: themore they are far apart, the longer
it will take for the system to reach them and so the longer they will be characterised by a non-
stationary behaviour.

6.1.3 TIME-VARYING COINTEGRATION
For the purpose of this study, we propose to use the method proposed by Bierens and Martins
(2010) to test the hypothesis of standard, time invariant cointegration against the hypothesis
of time-varying cointegration. The reason for this is that there are several assumptions which
presume that the relationship spanning between pollution, crop yields and climatic variables
has not always been and will most likely not be invariant in the future.
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To derive the test used for testing the presence of a time-varying cointegration, let’s start by
taking a Vector Error Correction Model (VECM) of the type:

∆Yt =ΠT
t Yt−1 +

p−1∑
j=1
Γ j∆Yt− j +ϵt (4)

where t = 1,2, ...,T the total number of observations, ΠT
t = αβT

t where α and βt are both (kxr)
matrices, ∆Yt = Yt −Yt−1 a (kx1) matrix, Yt ∈ Rk , ϵt ∼ i .i .d .Nk (0,Ω) and Ω and Γ j both fixed
(kxk) matrices; given such a model, the objective of the test is to test the null hypothesis of
time invariant cointegration, such as ΠT

t =ΠT =αβT and both α and β are fixed (kxr) matrices
with r ank(ΠT

t ) = r < k, against the alternative hypothesis of time-varying cointegration, such
as ΠT

t = αβT
t and α is still a fixed (k × r ) matrix but βt time variant, even though keeping the

same dimension (k × r ); in this second case we still have that r ank(ΠT
t ) = r < k.

In order to estimateβt , which is anunknown functionof time, ChebyshevPolynomials are used.
Chebyshev polynomials are polynomials defined as:

P0,T (t ) = 1 (5)

P1,T (t ) =p
2cos(iπ

( t−0.5
T

)
(6)

with t = 1,2, ...T being the time periods and i = 1,2,3...,m the order of the polyno-
mial. These polynomials are smooth functions of i and for all integers i , j we have that
1
T

∑T
t=1 Pi ,T (t )P j ,T (t ) = 1(i = j ), which gives this polynomial its orthonormality characteristic.

The orthonormality property allows to model any function g (t ) of discrete time as:

g (t ) =
T−1∑
i=0

ξi ,T Pi ,T (t ) (7)

where

ξi ,T = 1

T

T∑
t=1

g (t )Pi ,T (t ) (8)

are Fourier coefficients. In case βt is smoothly evolving thorough time, as assumed in this
framework, then βt can be expressed as βt (m) = gm,T (t ) =∑m

i=0 ξi Pi ,T (t ), which in turns allows
us to get the following time-varying VECM specification:

∆Yt =α(
m∑

i=0
ξi Pi ,T (t ))T

t Yt−1 +
p−1∑
j=1
Γ j∆Yt− j +ϵt (9)

The time invariant cointegrationcorresponds tohaving ξT Y m
t−1 =βT Y 0

t−1 where ξ
T = (βT ,Or,k.m)

and Y 0
t−1 = Yt−1. Now, given that we have disclosed a way to estimate the time-varying VECM,

testing the null hypothesis of time invariant cointegration against the alternative of time-
varying cointegration boils down to using the following Likelihood Ratio (LR) test to determine
which model performs better:

LR t vc =−2[l̂T (r,0)− l̂T (r,m)] (10)

where l̂T (r,0) is the log likelihood of the time invariant VECM (and that is why m = 0), while
l̂T (r,m) is the log likelihood for the time varying VECM. In both cases, r represents the cointe-
grating rank as mentioned above.

6.2 GRANGER CAUSALITY
Granger causality is based on twomain principles: [i] the cause usually preceeds its effects and
[ii] the causemakes unique changes in the effects. We say that a variables X Granger causesY , if
the past values of X support in predicting the future values of Y beyond what could have been
done with the past values of Y only. The stationarity of the time series under consideration
is a fundamental assumption of the Granger causality analysis. If the series involved are not
stationary, they have to be made so through differencing or other techniques, such as taking
the log of the series. Specifically, given two stationary time series X and Y we have two different
information sets: [i] I∗(t ) the set of all available informationup to time t and [ii] I∗−X (t ) the set of
all available information up to time t excluding the information provided by X . If X really aids
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the prediction of future values of Y , the conditional distribution of the future values of Y should
differ under the information set I∗(t ) and under I∗−X (t ) [9]. Then, X is defined to Granger cause
Y if

P
[
Y (t +1) ∈ A|I∗(t )

] ̸=P[
Y (t +1) ∈ A|I∗−X (t )

]
(11)

for some measurable set A ⊆ R and t ∈ Z, with A being the set of future realisations of
Y (t ).

However, modeling the distribution of multivariate time series can be highly complicated, es-
pecially when using functions with non-convex loss landscapes such as deep neural networks.
Moreover, theGranger causality definitiondoesnot give exact assumptionson thedata generat-
ingprocess of the variables involved. For this reason, ausual approach to test for thepresenceof
Granger causality is through the estimation of linear models, which tend to be easy to estimate
and yet robust in their estimation. The VAR model is one of such models and one of the most
used. The idea is the following. Given several time series X1, ..., Xν, we estimate the following
VAR for each of the X j time series:

X j (t ) =
V∑

i=1
βT

j ,i Xt ,Lag g ed
i +ϵ j (t ) (12)

where X t ,Lag g ed
j = [Xi (t −L), ..., Xi (t −1)] is the history of Xi up to time t , L is the maximal time

lag and β j ,i = [β j ,i (1), ...,β j ,i (L)] is the vector of coefficients modeling the effects of Xi on the
target time series. The Granger causality is tested estimating the model with and without all
the possible Xi values with i = 1, ...,V . If the conditional probability of the target variable X j
does not change under the different models, then there is no Granger causality as expressed in
12.

6.3 DEEPAR
Given a target time series zi ,1:t0−1 = [zi ,1, ..., zi ,t0−2, zi ,t0−1] and wanting to estimate its fu-
ture values zi ,t0:T = [zi ,t0 , zi ,t0+1, ..., zi ,T ], we need to model the conditional distribution
P (zi ,t0:T |zi ,1:t0−1,xi ,1:T ), where xi ,1:T is a time series of covariates assumed to be known at all
time points. Assuming that the model distribution consists of a product of likelihood factors
like

Qθ(zi ,t0:T |zi ,1:t0−1,xi ,1:T ) =ΠT
t=t0

Qθ(zi ,t |zi ,1:t−1,xi ,1:T ) =ΠT
t=t0

p(zi ,t |θ(hi ,t ,Θ)) (13)
where hi ,t is the output of an autoregressive recurrent network hi ,t = h(hi ,t−1, zi ,t−1,xi ,t ,Θ). The
h is a function implemented by a multi layer Recurrent Neural Network (RNN) estimated with
a Long Short TermMemory (LSTM)model and parametrized byΘ [27]. Thismodel can be used
in place of the VAR and then proceeding in the testing of Granger causality. Specifically, it’s
possible to assess differences in the DeepAR model estimation before and after using specific
variables, assumed to Granger cause the target variables, by using the following causal signifi-
cance score (CSS):

C SSi→ j ln
M APE i

j

M APE j
(14)

whereM APE i
j is themean absolute percentage error between the ˆz j ,t and the real z j ,t using the

variable zi ,t and M APE j without using zi ,t .

6.4 KNOCKOFF COUNTERFACTUAL
The knockoff counterfactual technique was first proposed in 2015 [12]. The idea of the tech-
nique is to swap the original variables with some fake ones and checking if the model estima-
tions change. Given the set of the original variables Z such that Z = Z1, Z2, ..., Zn , with distribu-
tion Pz , the knockoffs are created such that they are in-distribution null variables. The knock-
offshave the samedistribution as the original variables but theydonot contain any information
about the target variable, and for this reason they can be swapped with the original variables
to check how themodel estimation change. Moreover, the knockoffs have the same covariance
structure and the correlation between the knockoffs is the same as the correlation between the
original variables.
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