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ABSTRACT

We propose a novel method for the bias adjustment and post-processing of grid-
ded rainfall data products. Our method uses U-Net (a deep convolutional neural
network) as a backbone, and a novel loss function given by the combination of
a pixelwise bias component (Mean Absolute Error) and a spatial accuracy com-
ponent (Fractions Skill Score). We evaluate the proposed approach by adjusting
extreme rainfall from the popular ERA5 reanalysis dataset, using the multi-source
observational dataset MSWEP as a target. We focus on a sample of extreme rain-
fall events induced by tropical cyclones and show that the proposed method sig-
nificantly reduces both the MAE (by 16%) and FSS (by 53%) of ERA5.

1 INTRODUCTION

Tropical cyclones (TCs) are one of the costliest and deadliest natural hazards due to the combination
of their strong winds and induced storm surges and heavy precipitation, which can cause devastating
floods (Mendelsohn et al., 2012). Unfortunately, due to its high spatio-temporal variability, complex
underlying physical processes, and lack of high-quality observations, precipitation is still one of
the most challenging aspects of a TC to model (Zhao et al., 2022). However, as precipitation is a
key forcing variable for hydrological processes acting across multiple space-time scales, accurate
precipitation input is crucial for reliable hydrological simulations and forecasts which can be used
to inform disaster risk management decisions.

A popular source of precipitation data is the ERA5 reanalysis dataset, frequently used as input to
hydrological models when studying floods (Harrigan et al., 2020; Dullaart et al., 2020; Cantoni et al.,
2022; Wanzala et al., 2022). Previous studies found that ERA5 systematically underestimates heavy
precipitation events Bhattacharyya et al. (2022); Sun et al. (2022), and in particular (as shown later
in this paper), the spatial distribution of TC-rainfall in ERA5 has large room for improvement and
this is key to accurately identify TC landfall and inform decisions.

Here, we present a precipitation post-processing scheme based on U-Net, a popular deep-learning
architecture (Ronneberger et al., 2015). Originally developed in the field of medical computer vision
(Ronneberger et al., 2015), U-Net (Figure 1) is now ubiquitously used when there is a need to apply
a transformation to gridded data without altering the input resolution. Rather than only adjusting the
per-pixel precipitation values at each timestep of a given TC, we explicitly design our model to also
adjust the spatial distribution of the precipitation; to the best of our knowledge, we are the first to
do so. The key novelty of our model is a custom-made loss function, based on the combination of
the Fractions Skill Score (FSS; (Roberts & Lean, 2008)) and Mean Absolute Error (MAE) metrics.
We train and validate the model on over 200k time steps from global precipitation events induced
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by TCs. We show how a U-Net trained with our loss function can reduce the per-pixel MAE of
ERA5 precipitation by nearly as much as a U-Net trained with only MAE as the loss function, while
out-performing it significantly in terms of improved spatial patterns of precipitation. Finally, we
discuss how the outputs of our model can be used for future research.

2 DATA AND METHODOLOGY

2.1 DATA

We downloaded the hourly global total precipitation fields of ERA5 from the Climate Data Store1

at a resolution of 0.25◦ x 0.25◦, between 1980 and 2020. We downloaded precipitation data over
the same period also for the MSWEP dataset (a multi-source observational dataset blending gauge,
satellite, and reanalysis data, and currently one of the most accurate precipitation datasets Sharifi
et al. (2019)), which we used as the gold standard in our study (i.e., as the target for the deep
learning model). As MSWEP comes with 3-hourly temporal and 0.1◦ x 0.1◦ spatial resolution,
we regridded ERA5 onto MSWEP’s grid using linear interpolation and aggregated it to a 3-hourly
temporal resolution.

To locate TC centres, we used the best-track data from the International Best track Archive for
Climate Stewardship (IBTrACS) project (version v04r002), at a temporal resolution of 3h. For each
timestep in IBTrACS (i.e., the location of a TC in time and space), we cropped ERA5 and MSWEP
around a 500 km-radius box centred on that TC’s location, yielding rainfall grids of dimensions 96 x
96 x 1 pixels for each dataset. Repeating this procedure for all timesteps in IBTrACS (except those
marked as “spur” or “extratropical”, as per Schreck et al. (2014)’s guidelines) resulted in 258,834
training pairs of (ERA5, MSWEP) grids, which we split into 165,654 (64%) for training, 41,413
(16%) for validation, and 51,767 (20%) for testing.

2.2 QUANTIFYING SPATIAL ERRORS

Previous works on the correction of rainfall gridded products used pixelwise metrics (e.g., Mean
Absolute Error and Mean Squared Error) to guide the training of models and evaluate their perfor-
mance (Le et al., 2020; Sadeghi et al., 2020; Hu et al., 2021; Han et al., 2021). However, pixelwise
metrics encourage models to avoid predictions with sharp gradients, resulting in predictions that are
“blurred out” (Stengel et al., 2020). Furthermore, if the predictions are perfect in terms of pattern
and intensity but slightly offset (e.g., by even just one pixel), pixelwise metrics will be very poor,
thus penalising excessively non significant errors (Gilleland et al., 2009).

Following the work by Lagerquist & Ebert-Uphoff (2022), we propose instead to use a spatial
verification metric (i.e., a metric that quantifies the similarity of the spatial patterns in two gridded
products) frequently used in atmospheric science: the Fraction Skill Score (FSS; (Roberts & Lean,
2008)), which takes values between 0 (no match) and 1 (perfect match). The FSS first applies
an intensity threshold Q (which here we consider to be a percentile of rainfall intensity) to the
input grids, turning them into binary maps, with pixels of values 1 (0) if greater (smaller) than Q.
Given these binary maps, the FSS then calculates the fraction of pixels within a patch of size N that
are positive, and computes the Mean Square Error between observed and predicted grids (over all
patches) . Following a grid search for N ∈ [3, 15, 27] and Q ∈ [80, 95, 99], we selected N = 15
and Q = 99 as the combination of parameters that maximised the ability of the metric to measure the
similarity of spatial patterns while minimising the pixelwise errors (computed via MAE). Therefore,
our implementation of the FSS quantifies the similarity of patterns of rainfall in 15 x 15 pixels
patches for the 1% most intense rainfall in the input grids.

To use the FSS as a loss function for a neural network, we adjusted it in two ways: (1) we inverted
it, so that FSS = 1 indicates no match between the observed and predicted grids (thus yielding
the greatest possible gradient); (2) we made it differentiable by replacing the hard threshold (Q)
exceedance function by an arctan function of Q (Equation 1), followed by a Gaussian filter and a
normalisation into the range [0, 1]. Cumulatively, these steps brought the values in each grid close

1https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
2https://www.ncdc.noaa.gov/ibtracs/
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Table 1: U-Net hyperparameters and implementation details

Name Value Name Value

# blocks 3 # filters [8, 16, 32, 64]
filter size 3 x 3 batch size 16
epochs 200 dropout none
optimiser RMSprop lr 1e-4

to binary without applying a non-differentiable hard threshold. For the rest of the paper, we will
refer to this modified version of the FSS using the notation FSS′.

binary map = arctan(input grid− percentile(input grid,Q = 99)) (1)

2.3 DEEP LEARNING MODEL

To perform the adjustment of ERA5 gridded precipitation, we used the U-Net deep convolutional
neural network. In U-Net, inputs are first encoded via a series of convolutional and max pooling
layers (which reduce the spatial resolution and increase the semantic meaning of the information),
and then decoded via a series of convolutional and upsampling layers (which restore the spatial
resolution while maintaining high-level semantic information). Blocks of the encoder and decoder
that are at the same depth are then connected to facilitate the transfer of spatial information to the
semantically complex layers of the decoder.

The hyperparameters and implementation details of the network are reported in Table 1. We trained
two versions of U-Net: (i) U-NetMAE , using MAE as a loss function; (ii) U-Netcomp, using a
compound loss defined as:

compound loss = α0MAE + α1FSS′ (2)

where the optimal values for α0 and α1 were found to be 1 and 0.75, respectively, via tuning on the
validation set.

Figure 1: Sketch of U-Net’s architecture as implemented in our experiments.
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Table 2: Test set results
ERA5 U-NetMAE U-Netcomp

Value Value % under Value % under % under
ERA5 ERA5 U-NetMAE

MAE 1.170 0.951 18.536 0.974 16.557 -2.430
FSS′ (Q=80) 0.093 0.089 4.104 0.089 4.212 0.113
FSS′ (Q=95) 0.291 0.287 1.408 0.236 19.128 17.973
FSS′ (Q=99) 0.498 0.398 19.936 0.233 53.215 41.566

3 RESULTS AND DISCUSSION

We report four metrics to evaluate the performance of our models (Table 2): MAE, to verify that
the rainfall is also adjusted pixelwise (local biases); and three implementations of FSS′ with three
intensity thresholds (80%, 95%, and 99% percentiles), to verify if the rainfall spatial patterns are
adjusted only at the intensity threshold used in the loss function (99%) or also at lower intensities.

Results show that both U-NetMAE and U-Netcomp reduce the MAE and FSS′ (Q=99). However,
U-Netcomp, while retaining MAE performance comparable to U-NetMAE , improves the FSS′ for
Q=99 more substantially. Furthermore, while U-NetMAE improves the FSS′ only for Q=99, U-
Netcomp also significantly improves FSS′ for Q=95, showing a greater propensity for more general
spatial pattern adjustment. We also show (Figure 2) that these improvements in spatial accuracy are
more visible for U-Netcomp than for U-NetMAE .

Figure 2: Examples of how U-Netcomp corrects spatial patterns better than U-NetMAE , which seems
to rather blur out the input. Boxes A1-A2 and B1-B2 highlight parts of the grid in which the im-
provement of U-Netcomp over U-NetMAE is especially noticeable.

4 CONCLUSIONS AND FUTURE STEPS

In this paper, we presented a novel approach for the adjustment of gridded rainfall products which
specifically aims to improve both the spatial patterns and intensity biases. Our method relies on a
custom loss function, made by the combination of the MAE and FSS loss function, used to train a
U-Net deep convolutional network. Compared to an equivalent network trained with a classic MAE
loss, our method achieved comparable pixelwise bias adjustment and greatly superior spatial pattern
adjustment.
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We foresee two directions in which this work could be developed further: one that uses a more
complex backbone for the prediction (i.e., a deeper/newer U-Net architecture), and one that applies
the proposed method to gridded rainfall forecasts, to understand if improved spatial patterns of
forecast rainfall can be useful for flood preparedness and emergency response applications.
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