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ABSTRACT

Species distribution models (SDMs) relate species occurrence data with envi-
ronmental variables and are used to understand and predict species distributions
across landscapes. While some machine learning models have been adopted by the
SDM community, recent advances in neural networks may have untapped poten-
tial in this field. In this work, we compare the performance of multi-layer percep-
tron (MLP) neural networks to well-established SDM methods on a benchmark
dataset spanning 225 species in six geographical regions. We also compare the
performance of MLPs trained separately for each species to an equivalent model
trained on a set of species and performing multi-label classification. Our results
show that MLP models achieve comparable results to state-of-the-art SDM meth-
ods, such as MaxEnt. We also find that multi-species MLPs perform slightly better
than single-species MLPs. This study indicates that neural networks, along with
all their convenient and valuable characteristics, are worth considering for SDMs.

1 INTRODUCTION

Describing and understanding the geographic distribution and environmental suitability of species
is a central question in ecology and biogeography. It has become increasingly meaningful in the
face of anthropogenic pressure on biodiversity (Barnosky et al., 2011) and has occasioned the devel-
opment of species distribution models (SDMs)1. Such models relate species occurrence data with
environmental variables and are used to understand and predict species’ distributions across land-
scapes (Elith and Leathwick, 2009). Such predictions may allow the identification of areas likely to
be invaded by non-native species (Thuiller et al., 2005b), the forecast of shifts in distribution due
to climate change (Thuiller et al., 2005a), or the selection of field survey areas to speed up the dis-
covery of a new population of a species (Fois et al., 2015). SDMs can therefore be used to support
decision-making for species conservation (Guisan et al., 2013) and prevent biodiversity loss, which
is generally beneficial for the climate as shown by Shin et al. (2022).

However, species occurrence data used for SDMs are expensive and complicated to collect. Datasets
are typically small, especially for rare species and in regions that are less well-researched, restricting
their predictive power and making them difficult to transfer to other regions. These datasets con-
sist of either presence-absence data from systematic field surveys, or presence-only data, which is
easier to collect and more widely available, especially with crowdsourcing initiatives such as iNat-
uralist (Van Horn et al., 2018) or Pl@ntNet (Joly et al., 2016). When using presence-only data,
pseudo-absences or background points may be generated (randomly or according to specific sam-
pling strategies) and used as negative samples in the model (Phillips et al., 2009).

∗Indicates equal contribution
1It should be noted that many names exist for this type of model. In some contexts, ecological niche model

may be more appropriate to refer to these types of models (Peterson and Soberón, 2012). For simplicity, we
will use the term species distribution model.
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Figure 1: Number of occurrences per species in the training and test set for each region. The x-axis
is logarithmic. The two distributions are quite different, but both follow a long-tailed distribution.

Well-established methods for SDMs are adapted to the customarily small datasets and include sim-
ple statistical models, such as generalized linear models (GLMs) and generalized additive models
(GAMs), as well as machine learning methods like random forests, support vector machines, and
MaxEnt (Phillips et al., 2017; Zhang and Li, 2017; Valavi et al., 2022). Generally, species are mod-
eled independently of each other, despite the fact that biotic interactions shape species’ distributions
at local scales (Wisz et al., 2013). Deep learning methods are revolutionizing ecological modeling
(Tuia et al., 2022) and might be particularly suitable in an SDM context: they can model highly
non-linear relationships between environmental variables and distributions, and can elegantly model
multiple species at once. Hence, with the growing amount of available data, deep learning algo-
rithms for SDMs have begun to be explored (Botella et al., 2018; Deneu et al., 2021; Lorieul et al.,
2022), but are far from being standardized in the field of ecology.

In this work, we explore the performance of neural networks, specifically multilayer perceptrons
(MLPs), for SDM using tabular data from a benchmark dataset (Elith et al., 2020). We compare our
results to the benchmark evaluation of well-established methods (Valavi et al., 2022). Furthermore,
we compare a single-species approach, i.e., a set of MLPs trained individually for each species, to a
multi-species approach, where a single MLP is trained on the data for a set of species and therefore
performs multi-label classification. With both approaches, we achieve comparable results to state-of-
the-art methods such as MaxEnt. The multi-species model performs overall slightly better than the
single-species model, particularly for species with very few records. We hypothesize these species
may benefit from the integration of other related species, as the model could recognize common
environmental patterns. These results pave the way to ecology-guided neural network strategies for
SDMs exceeding the simple ones presented in this short paper.

2 MODEL AND METHODS

Dataset: We use the dataset from Elith et al. (2020) which contains occurrence data for 226 species2

from 6 regions of the world: Australian Wet Tropic (AWT), Canada (CAN), New South Wales in
Australia (NSW), New Zealand (NZ), South America (SA), and Switzerland (SWI). For each region,
we have access to 11 to 13 different environmental covariates, including climatic and pedological
variables. This dataset was made public, albeit with anonymized species, as a benchmark, so that
different methods can be tested and compared (Elith et al., 2006; Phillips et al., 2017; Valavi et al.,
2022). It is particularly valuable because it contains an independent test set made of presence-
absence data, which allows unbiased evaluation of the SDM results. In contrast, the training set
consists of presence-only data and background points, uniformly sampled for each region, as is the
norm for observational data for SDMs. To match our setup to that of Valavi et al. (2022) and be able
to compare our results, we also use the 50, 000 background points provided by the authors, rather
than those provided in the original dataset. The training data is representative of what is usually
available for SDMs and is characterized by a long-tailed distribution over the number of occurrences
per species. The distribution of samples per species can be observed in Figure 1: 50% of the species
have less than 60 occurrences in the training set. Furthermore, we can also note a mismatch between
the distributions of the two sets, indicating that the data was collected in different ways.

2Like in Valavi et al. (2022), we exclude one species for which only 2 occurrences were available in the
training set. Therefore, we consider 225 species.
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AWT CAN NSW NZ SA SWI
MaxEnt 0.686 0.584 0.713 0.738 0.804 0.809
XGBoost 0.653 0.568 0.706 0.720 0.788 0.815
Random Forest 0.675 0.572 0.718 0.746 0.813 0.818
Ensemble 0.683 0.580 0.723 0.749 0.806 0.812
Single-species MLP 0.666 0.589 0.688 0.715 0.799 0.808
Multi-species MLP 0.617 0.605 0.708 0.714 0.803 0.815

Table 1: Mean AUROC across species for each region achieved by our models and the state-of-the-
art models3 of Valavi et al. (2022). The results of our single- and multi-species models are averaged
over 10 different random models initialization to add statistical power.

Model architecture: We use a multi-layer perceptron (MLP), a well-studied neural network archi-
tecture, which can be repurposed from a single-species to a multi-species model by simply increasing
the number of neurons in the output layer. We take inspiration from the MLP mixer architecture of
Tolstikhin et al. (2021), which incorporates recent advances in deep learning. Accordingly, one layer
of our MLP consists of the sequential application of batch normalization (Ioffe and Szegedy, 2015),
a fully connected layer, the SiLU activation function (Elfwing et al., 2017), and dropout Srivastava
et al. (2014). It is repeated L times with skip connections, where L is a hyperparameter. A sigmoid
function is applied to each neuron in the last layer to obtain a prediction between 0 and 1 that can be
interpreted as a species occurrence score. An illustration of the architecture of our MLP models can
be found in Appendix A.

Training: MLPs are known to be highly sensitive to hyperparameters, making it difficult to reg-
ularize them properly (Grinsztajn et al., 2022). We use the Optuna library (Akiba et al., 2019)
to improve and automate the hyperparameter search for both the multi-species (one global model)
and the single-species (one model per species) cases. To account for the class imbalance, we use
a weighted binary cross-entropy, where the weight for each species is the ratio of the number of
presences to the number of background points. In the case of the multi-species model, we take
into account the number of background points plus the number of sites where that species was not
observed. Further implementation details can be found in Appendix A.

3 RESULTS

We evaluate our models via the Area Under the Receiver Operating Characteristic curve (AUROC)
for each species and the average AUROC across species for each region. In Table 1, we see that,
although no model systematically outperforms all others, both our single- and multi-species MLPs
achieve AUROC values that are comparable to those of the state-of-the-art SDM methods evaluated
in Valavi et al. (2022). The left panel of Figure 2 shows that the AUROC values vary a lot across
and within each geographical region for our methods, as well as for MaxEnt.

Our multi-species MLP outperforms the single-species models in four regions. We observe in the
right panel of Figure 2 that species with a low number of occurrences in the training set seem to be
more strongly affected by the choice of the model. Species with sufficient occurrence data (>200)
show very similar performance between single- and multi-species models, whereas species with very
few occurrences (<10) perform on average better with the multi-species model, showing the inher-
ent class regularization effect of a multi-species model, which indirectly leverages co-occurrences
information.

4 DISCUSSION

Table 1 shows that no model outperforms any other consistently. Although our MLP models perform
comparably, state-of-the-art SDM methods, notably tree-based methods like random forest, remain
among the top models for SDM. In fact, tree-based methods generally handle tabular data better

3We consider the three methods obtaining the best mean AUROC over all species in Valavi et al. (2022),
i.e., MaxEnt, Random Forest down-sampled, and Ensemble. We also add XGBoost as it is often considered to
be a state-of-the-art model for tabular data.
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Figure 2: Left: Box plots showing the variability of AUROC across species within each region, for
MaxEnt (Valavi et al., 2022) and our models. Right: Difference of AUROC between our multi-
and single-species models for each species, grouped by the number of occurrences in the train set.
Points above the horizontal line indicate a species where the multi-species model obtains a higher
AUROC than the single-species model and vice-versa. Error bars represent the standard deviation
along with the mean over the species of the given group.

than neural-based approaches (Borisov et al., 2021; Grinsztajn et al., 2022). This is consistent with
our results, particularly when comparing single-species MLPs with random forests. SDMs almost
always use tabular data, despite the fact that species distributions are inherently geospatial. One
way to account for the geospatial nature of the task is to consider raster images of environmental
variables or satellite images as input features (Deneu et al., 2021; Kellenberger et al., 2022). Such
data naturally informs about spatial context and patterns beyond the variables observed at the specific
location of the occurrence, leading to a natural spatial regularization. Convolutional neural networks
are more adapted to image or raster input data than tree-based approaches or MaxEnt.

Furthermore, neural networks are more flexible for integration into more complex machine learning
systems and are a promising approach to improve upon the current state-of-the-art SDM models,
for instance by incorporating other modalities alongside tabular data, or including expert knowl-
edge, such as information about species interactions, through knowledge-guided machine learning
(Karpatne et al., 2022). Even when remaining in the realm of tabular data, our results show that
including other species in the training can improve the model performance. As shown in Figure 2,
species with very few occurrences seem to particularly benefit from the co-occurring environmen-
tal patterns of other species seen during training. Moreover, considering one multi-species model
instead of numerous single-species models reduces the computational burden and complexity of han-
dling as many models and hyperparameter searches as there are species. A multi-species framework
would also facilitate the integration of biotic interactions. Currently, species interactions are rarely
considered in SDMs, despite the fact that they may have an important influence on species distri-
butions (Guisan and Thuiller, 2005; Wisz et al., 2013). Pre-training approaches, such as fine-tuning
a multi-species initialization for a single-species model, or transfer learning from well-sampled
species to related species with fewer recorded occurrences, remain possibilities to be explored. Note
that the anonymization of the species in the Elith et al. (2020) dataset prevents us from identifying
such related species and hinders us from investigating these avenues with this dataset.

5 CONCLUSION

In this work, we compare MLP models to well-established species distribution modeling methods
and obtain results that are comparable to state-of-the-art methods on a standard benchmark where
evaluation is properly handled, i.e., including real species absence data. We highlight the conve-
nience and ecological significance of building SDMs that consider multiple species simultaneously,
rather than a single species. Finally, we underline the potential of neural networks in SDMs, due
to their ability to be integrated into more complex machine learning systems, such as knowledge-
guided machine learning and pre-training approaches.
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A IMPLEMENTATION DETAILS

Range AWT CAN NSW NZ SA SWI
#Layers {2,. . . ,6} 4 5 4 5 6 5
MLP width {256,. . . ,2048} 1327 285 456 465 1140 420
Learning rate [1e-5, 1e-2] 4e-3 1e-4 2e-5 2e-3 2e-5 4e-4
Weight decay [1e-5, 1e-2] 3e-3 8e-5 2e-3 9e-4 8e-5 9e-3
Dropout [0.0, 0.3] 0.17 0.018 0.15 0.28 0.04 0.018

Table 2: Range and best hyperparameters found by Optuna per region for the multi-species model.
The learning rate and the weight decay are sampled from the range in the log domain. The hyperpa-
rameters range is the same for the single-species model.

Linear
Batch
Norm. Linear SiLU Dropout Linear Sigmoid

L×

W W WW W

SiLU

Figure 3: The architecture of our MLP models. The input size is the number of environmental co-
variates for a given region (a little more if the region contains one-hot encoded categorical variables).
The size of the output is one for the single-species model, while it is the number of species in the
region for the multi-species model.

We ran Optuna for 50 iterations for each model to find the best set of hyperparameters within the
ranges shown in Table 2. For the multi-species model, each iteration of Optuna trains a model for 200
epochs, and we select the one that gives the best AUROC on the validation set (20% of the training
set sampled uniformly at random) with early stopping. The best-performing hyperparameter-set for
each region can be found in Table 2. For the single-species model, we use k-fold cross-validation,
where k equals 3, as the number of presences for some species is very low. For the same reason, we
use the entire training set for the training of the final single-species model, which prevents us from
using early stopping. We therefore only train it for 50 epochs to avoid overfitting. Each iteration of
Optuna considers the mean AUROC over the k folds to determine the best set of hyperparameters.
We decided not to list the best set of hyperparameters for each of the 225 species.

We train all our models using the AdamW optimizer (Loshchilov and Hutter, 2017) with β1 = 0.9,
β2 = 0.999, ϵ = 1e-8, a learning rate scheduler with an exponential decay of 0.95, and a batch size
of 256. Some regions contain a few categorical variables, which take a small number of different
values. We therefore one-hot encode them before feeding them into our MLPs. Finally, the archi-
tecture of our MLP models is illustrated in Figure 3. After finding a good set of hyperparameters,
each model was trained with 10 different random initialization to add statistical power.
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