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ABSTRACT

This paper proposes an activity prediction framework for a multi-agent recom-
mendation system to tackle the energy-efficiency problem in residential buildings.
Our system generates an activity-shifting schedule based on the social practices
from the users’ domestic life. We further provide a utility option for the recom-
mender system to focus on saving CO2 emissions or energy costs, or both. The
empirical results show that while focusing on the reduction of CO2 emissions, the
system provides an average of 12% of emission savings and 7% of electricity cost
savings. When concentrating on energy costs, 6% of emission savings and 20%
of electricity cost savings are possible for the studied households.

1 INTRODUCTION

The energy consumption of private households amounts to approximately 30% of the total global
energy consumption (Allouhi et al., 2015), causing a large share of the CO2 emissions through en-
ergy production. Increasing the efficiency of energy consumption through managing the demand,
for instance through load shifting, is a feasible way to reduce CO2 emissions. For the practical
implementation of load shifting, private households require data-driven decision support. Recom-
mendation systems provide a framework by suggesting energy-efficient actions.

Existing literature on recommender systems for load shifting in residential houses mainly focuses on
rescheduling the device usage (Marinakis & Doukas, 2018; Khalid et al., 2019; Fioretto et al., 2017).
However, recommending residents when to use appliances does not resonate with the way people
spend their time at home. The domestic use of energy is a result of deeply embedded social practices
(Katzeff & Wangel, 2015), which can be depicted as activities (i.e., cooking, laundering). Dwellers
can more easily understand and follow the recommendations on shifting their activities instead of
devices (Stankovic et al., 2016). Only a few works explore activity-aware systems and recommend
the shifting of domestic activities corresponding to energy-consuming devices (Marcello & Pilloni,
2020; Thomas & Cook, 2016). However, these works rely on various sensor data with activity labels.
The high amount of sensors increases the implementation effort and costs in real-life applications
and burdens users with the requirement of tracking their activities for a sufficient amount of time.

This research focuses on human-centered energy-efficiency improvements in residential households
to tackle climate change. In particular, we propose an activity prediction framework for a multi-
agent recommendation system to nudge behavioral changes. We summarize our key contributions
as follows. First, we design and implement an Activity Agent that calculates the activity probabilities
for every hour in contrast to other works that utilize daily device-usage probabilities (Jiménez-Bravo
et al., 2019; Riabchuk et al., 2022; Zharova et al., 2022). The resulting activity-shifting schedule is
based on social practices from the users’ domestic life. Therefore, recommendations can be easier
integrated into daily life, fostering the acceptance and usage of the system over a longer period.
Second, aiming at practical deployment, we suggest a measure to evaluate the Activity Agent’s
performance without ground truth data. Third, we enhance the prediction power of the system by
utilizing Random Forest (RF) and feed-forward Neural Network (NN) algorithms in comparison to
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the benchmark model in Riabchuk et al. (2022). Fourth, to produce recommendations, our system
needs minimal user input, and appliance-level energy consumption data (i.e., from low-cost smart
plugs) and does not require activity labels or other sensors, thus, reducing the implementation costs.
With this, the system solves the cold start problem in two to six months for most households. Finally,
we provide a utility option to focus on saving CO2 emissions or energy costs, or both.

2 METHODS

Our activity-based recommendation system builds upon the architecture of [9] that includes six
agents: Price Agent (collects external electricity price data), Preprocessing Agent (prepares the ap-
pliance energy consumption data), Load Agent (generates device load profiles), Availability Agent
(produces hourly probabilities of user availability), Usage Agent (calculates daily device usage prob-
abilities), and Recommendation Agent (generates a device-shifting schedule for the next 24 hours).
However, the recommendation system by Riabchuk et al. (2022) generates device-usage recom-
mendations without considering activities and, thus, does not resonate with the social practices of
domestic life.

In this work, we propose an activity prediction framework for the multi-agent recommendation
system (see Figure 1). First, we divide the activities into three groups referring to their flexibility to
shift starting hours: flexible, slightly flexible, and inflexible. Flexible activities can be easily brought
forward or postponed to later (i.e., cleaning), slightly flexible have a certain potential to be shifted
but not throughout the whole recommendation horizon (i.e., entertaining), and inflexible are bound
to certain starting hours (i.e., working). During the installation of the system, the user has to specify
which household devices correspond to which activities. Using the user input, the system creates an
activity-device mapping in a form of a vector representation. Second, we repurpose the Usage Agent
to calculate the hourly usage probabilities for all devices related to flexible activities. Third, we
create an Activity Agent that receives the output of the Usage Agent and the activity-device mapping.
It applies a vector space model to calculate the cosine similarity for each activity vector and outputs
the hourly probabilities for every flexible activity for the 24-hour recommendation horizon. Next,
to address the CO2 reduction within the recommender system, we create a CO2 Emissions Agent
that predicts the hourly amount of CO2 emissions to be generated during the power production in
the recommendation horizon. The Recommendation Agent collects outputs from other agents and
generates activity-shifting recommendations.

Figure 1: Architecture of the activity-based multi-agent recommendation system

The Availability Agent takes five features as input: month, day and hour of appliance use, the
resident’s availability one hour and one week ago based on the use of appliances that ensure the
resident is at home. The Usage Agent takes the time features (month, day, hour) and time lag one-
hot-encoded features (one hour and one week ago) indicating the usage of each household appliance.
Since the Availability and the Usage Agents perform a classification task with supervised learning,
we measure their performance using an Area Under the ROC-Curve (AUC). Initially, the models
within the agents are trained on the four weeks of data to address the cold start problem. We calculate
the AUC using the fifth week as a test set. With each passing day, the dataset gets larger, and so does
the training and test set, maintaining an 80:20 ratio. After every four months, the hyperparameters
are tuned cutting of the oldest two months to ensure the model accounts for the household’s current
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consumption behavior. In this way, the models are trained using a maximum of six months of energy
consumption data. The final AUC is the average AUC value of all evaluations within the one year.
To prevent overfitting due to the small dataset, we apply simple model and early stopping.

The Activity Agent utilizes unsupervised learning. Following our middle-term aim of practical
deployment of the system with minimal user input, we develop an EQUAL score to evaluate the
Activity Agent’s performance without ground truth data (see Appendix for derivation details). The
EQUAL score indicates how many hourly sets of activities out of 24 hourly sets the Activity Agent
can correctly predict on average. To evaluate the overall performance of the recommendation sys-
tem, we extend the evaluation framework of Riabchuk et al. (2022) to account for CO2 emission
savings. In particular, we quantify how much CO2 emissions and costs a user can save by employ-
ing the system for one year. For this purpose, we calculate the CO2 emissions and energy costs for
executing the activities with and without following the activity-shifting recommendations generated
by the system.

3 EMPIRICAL RESULTS

To analyze the proposed recommendation system, we use the REFIT dataset (Murray et al., 2017)
that contains appliance-level electrical consumption data of 20 households in the UK from 2013 to
2015. Additionally, we use the carbon intensity data (ESO) and the day-ahead electricity prices for
the UK (entsoe). For our empirical study, we manually associate the devices with the corresponding
activities for every household to prepare the activity-device mappings. The recommendation system
further requires the value of the emissions ratio from the user as an input (i.e., 1.0 in case of focusing
on emission savings, 0.0 for cost saving, or 0.5 for both equally).

The recommendation system has three more hyperparameters: an availability threshold, an activity
threshold, and an aval-off value. The availability threshold indicates the minimum predicted proba-
bility that the user will be available, the activity threshold means the minimum predicted probability
that an activity will be carried out, and the Boolean variable aval-off means turning off the depen-
dence on the predicted availability hours for recommendations. These three hyperparameters are
initialized by the system, however, can be adjusted by the user later. Only hours with the probability
of user availability and activity higher than a threshold are considered for a recommendation.

Sintov & Schultz (2017) show that adjustable green defaults maximize energy savings. Therefore,
we initialize the system with hyperparameter values that lead to the highest possible savings. For
optimal initialization, we analyze changes in the distribution of the recommended activity launching
hours as well as in the performance measures due to changes in hyperparameters. We also perform
a grid search for the highest total savings on the household level to confirm the best parameters were
found. As a result, the availability and activity thresholds are set to 0.15 and the aval-off value to
true.

Riabchuk et al. (2022) use Logistic Regression for the prediction tasks of the Availability and the
Usage Agents. To improve the prediction performance in comparison to other studies (Riabchuk
et al., 2022; Zharova et al., 2022), we train the RF and NN models on the first four weeks of data
for each household before they make their first prediction. The models are tuned every four months
using the new energy consumption data and cutting off the oldest two months of data to focus on the
current energy consumption behavior. The NN model outperforms and, therefore, is used further.
We calculate the EQUAL score for the Activity Agent for various households (see Table A4 in
Appendix for more details). For instance, the EQUAL score of 0.79 for household 5 indicates that
the Activity Agent predicts 19 out of 24 hourly sets of activities on average correctly.

To measure the impact of the cold start problem on the recommender system, we evaluate the Avail-
ability, Usage, and Activity Agents for varying lengths of data. The Availability Agent reaches
rapidly acceptable performance solving the cold start problem after about 2.5 months, which is rel-
atively constant across households. On the contrary, the cold start scores of the Usage Agent vary
across the different devices and households. The cold start problem of the Activity Agent is solved
after around one month which is also quite constant across the households. The recommendation
system solves the cold start problem when all agents solve it. For instance, for household 5 all three
agents solve the cold start problem in 98 days at the earliest. Thus, the complete framework is solved
in 98 days (see Table A5 in Appendix).
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Table 2: Performance of the recommendation system for households 1 to 5 with an emissions ratio
of 0.0 compared to an emissions ratio of 1.0 and constant availability and activity thresholds of 0.15

The empirical results show that the average day-ahead CO2 emissions per hour and the average day-
ahead prices per hour are positively correlated (see Figure A2). Therefore, focusing on emission
savings only can also lead to cost savings and vice versa. Further analysis of different values for the
activity and the availability thresholds (see Tables A6 - A9) shows that the highest possible savings
are achieved with the low availability threshold combined with the low activity threshold. Higher
values of the activity and the availability thresholds lead to a reduction of the number of recommen-
dations and, in turn, a reduction of possible savings, but a similar distribution of recommendation
timings (see Figures A3 - A6). The empirical results in Table 2 indicate that while focusing on CO2
emissions (emissions ratio = 1.0), the system provides an average of 12% of CO2 emission savings
and 7% of electricity cost savings. When setting the focus on energy cost savings (emissions ratio
= 0.0), 6% of emission savings and 20% of electricity cost savings on average are possible for the
studied households in case of acceptance of the recommendations.

4 DISCUSSION

The proposed recommendation system draws on the previous works by using simple hardware, the
flexible architecture of a multi-agent system as well as a similar logic to generate recommendations.
However, our system improves and enhances the previous findings in several aspects.

(i) The recommendation systems by Riabchuk et al. (2022) and Jiménez-Bravo et al. (2019) generate
a maximum of one recommendation per device per day. Our system can suggest one recommen-
dation per activity per hour. In other words, our recommendation system provides one recommen-
dation for every time the probability for an activity to happen exceeds the activity threshold in the
recommended time horizon. This reflects the reality since domestic activities such as cooking or
laundering can happen several times a day.

(ii) Riabchuk et al. (2022) focus on shifting the usage of flexible devices (i.e., dishwasher), Jiménez-
Bravo et al. (2019) cover all shiftable devices but limit the number of recommendations per device
to not overload the user with too many recommendations. Recommending the shifting of activi-
ties reduces the number of recommendations per se, since activities represent a specific number of
devices that are used to carry out the activity.

(iii) The recommendation systems of Riabchuk et al. (2022) and Jiménez-Bravo et al. (2019) aim
at saving energy costs with load shifting. The proposed system enhances the utility dimension by
the possibility of setting the focus on saving CO2 emissions or electricity costs, or both equally.
Thereby, the system reaches a wider target group. In addition, the user can switch the focus of the
system while using it.

5 IMPACT AND SCALING POTENTIAL

A large fraction of CO2 emissions in high-income countries is due to energy consumption in res-
idential buildings. In low- and middle-income countries, this share is even higher. Suggesting
activity-shifting recommendations to private households every day provides a guide to control their
own ecological footprint and energy costs and furthermore supports SGD 7, 9, 11, and 13. Our
system can be used within a smartphone application or existing smart home system, thus, being a
viable tool for climate change mitigation in low-, middle-, and high-income countries alike.
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We see the following scaling potential for our approach. In 2023 20% of private households in
Germany will have a smart home system aiming at energy management (Statista, 2021). If 5% of
these households utilize the proposed activity-based multi-agent recommendation system, then 32
kilotons of CO2 emissions could be saved in 2023 in Germany. In 2026 the saving potential is even
higher since almost 48% of German households would be using smart home systems for energy
management (see Appendix for calculation details).

6 CONCLUSIONS

The empirical results show that our solution fosters saving CO2 emissions and energy costs by
shifting domestic activities. Activity-based recommendations can be more easily integrated into
daily life. This facilitates the acceptance and the usage of the system in a long-term perspective and,
thus, tackling the energy-efficiency problem in residential households.
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A APPENDIX

Table A1: An example of an activity-device mapping in form of a vector representation

Table A2: An exemplary output of the recommendation system

The output of the system starts with an overview of the greenest hour, meaning the hour with the fewest car-
bon intensity forecast of the day, and the cheapest hour of the day not considering predicted availability hours.
The system then generates the best beginning hours combined with the predicted activities’ duration. The sys-
tem concludes its output by providing the possible emissions and price savings for the recommended date in
reference to the emissions ratio specified by the user that are achievable by implementing all provided recom-
mendations. Based on this data the recommendation system provides activities’ beginning hours for the next 24
hours starting from the point in time the recommendations are provided by the system. The recommendations
are made if the user’s availability is predicted by the system and the suggested activity schedule would reduce
energy costs or CO2 emissions.

Table A3: Performance evaluation of the tested models Logistic Regression (LR), Random Forest
(RF) and Neural Network (NN) for the individual agents using the data of household 5
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Table A4: Performance evaluation of the individual agents for the households (HH) 1 to 5. The
Neural Network model used for the predictions of the Availability and the Usage Agents

Table A5: Cold start scores in days for the households 1 to 5

Table A6: Changes in the performance measures for household 5 regarding different activity thresh-
olds, an emissions ratio of 1.0 and a constant availability threshold of 0.15

Table A7: Changes in the performance measures for household 5 regarding different activity thresh-
olds, an emissions ratio of 0.0 and a constant availability threshold of 0.15
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Figure A1: Performance of the Availability Agent, the Activity Agent and the Usage Agent over a
year for household 5 for the cold start problem evaluation
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Table A8: Changes in the performance measures for household 5 regarding different availability and
activity thresholds, and an emissions ratio of 0.0

Table A9: Changes in the performance measures for household 5 regarding different availability and
activity thresholds, and an emissions ratio of 1.0

Figure A2: Average day-ahead hourly prices (in C/MWh) and average day-ahead hourly emissions
(in gCO2/kWh)

Figure A3: Changes in the distribution of starting hours for household 5 regarding different activity
thresholds, an emissions ratio of 1.0 and a constant availability threshold of 0.15
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Figure A4: Changes in the distribution of starting hours for household 5 regarding different activity
thresholds, an emissions ratio of 0.0 and a constant availability threshold of 0.15

Figure A5: Changes in the distribution of starting hours for household 5 regarding different avail-
ability and activity thresholds, and an emissions ratio of 0.0

Figure A6: Changes in the distribution of starting hours for household 5 regarding different avail-
ability and activity thresholds, and an emissions ratio of 1.0
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Table A10: Data for the calculation of the scaling potential
Table A1: Data for the calculation of the scaling potential

Variables Values Source

Short name Full name Fixed 2023 2026

H Number of German households 41738000 41791000 Destatis (2020)
HSH Number of German smart home 8500000 20000000 Statista (2021)

households aimed at Energy Management
EH Electricity consumption per 30501 Statista (2022)

average household per year (kWh)
CO2E CO2 emissions per kWh of 0.421 Icha (2022)

electricity (kg/kWh)
Possible CO2 emission savings 11.8%2

(emissions ratio = 1.0)
Possible CO2 emission savings 6%2

(emissions ratio = 0.0)

1 - data for 2021
2 - 11.8% and 6% are the calculated averages of the relative CO2 emission savings based on our
empirical results

Table A2: Calculation of the scaling potential
Variable Description Measure Results

2023 2026

RatioHSH
Proportion of German smart home % 20.37 47.86
households aimed at Energy Management
(HSH × 100)/H

HSH5%
5% of German SH households 425000 1000000
aimed at Energy Management
(HSH × 5)/100

EHSH5%
Electricity consumption of 5% of smart home kWh 1296250000 3050000000
households aimed at Energy Management
HSH5%

× EH

CO2HSH5%
CO2 emissions from 5% of SH kg 544425000 1281000000
multi-agent recommendation system
EHSH5%

× CO2E
SCO211.8% CO2 savings for 11.8% of possible savings kg 64242150 151158000

from multi-agent recommendation system
CO2HSH5%

× 11.8%
SCO26% CO2 savings for 6% of possible savings kg 32665500 76860000

from multi-agent recommendation system
CO2HSH5%

× 6%

The calculation results used in the main text are in bold.

1

Table A11: Calculation of the scaling potential
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B APPENDIX

DERIVATION OF THE EQUAL SCORE

The predictions of the Activity Agent are based on the device usage probabilities. If a device’s
usage is likely in a certain hour, the activity that has this device as its identifying device is also
likely to be carried out. Taking this principle every hour a set of devices Si

dev that are predicted
with a probability higher than a certain usage threshold can be translated in a set of activities Si

act
containing all activities, the devices in Si

dev are identifying devices for. As a result, Si
act can be used

as a target variable to compare the predictions of the Activity Agent with.

The output of the Activity Agent are activity probabilities for every possible activity per hour. An
hourly set of predicted activities Si

âct
can be compiled by taking all activities higher than a certain

activity threshold. To measure the performance of the Activity Agent, both sets needs to be com-
pared and checked for equality, meaning both containing the same activities. This procedure can be
denoted in the following:

IDact = {dev | P (dev) = 1}, (1)

where IDact is the set of identifying devices for each possible activity of the private household.
The values for P (dev) are provided by the activity-device mapping vector where 1 represents an
identifying relation between the activity and the device.

Si
dev = {dev | πdev > useth}, (2)

where Si
dev describes the set of devices whose device usage probability of hour i is greater than the

usage threshold useth.

Si
act = {Sact | dev ∈ Si

dev ∧ d̂ev ∈ IDact}, (3)

where Si
act is the set of activities that have an identifying activity-device relationship with the devices

of Si
dev.

Si
âct

= {âct | πâct > actth}, (4)

where Si
âct

describes the set of activities that are predicted by the Activity Agent with a probability
greater than the activity threshold actth.

EQUALact =

n∑
i=1

(Si
act = Si

âct
)/n, (5)

where EQUALact is the ratio of the sum of equal activity sets per hour i over n, with n being
the total number of hourly activity sets in the recommendation horizon, in this case 24. Since the
Usage Agent performs a preprocessing step for the Activity Agent also their performance evaluation
is obviously linked. Therefore, for each prediction from the different models trained to evaluate the
Usage Agent, the performance of the Activity Agent is measured using the proposed EQUALact

measurement. To receive a single evaluation value for the Activity Agent, the different measure-
ments are combined by calculating their mean.
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