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ABSTRACT

Recent data-driven approaches based on machine learning aim to directly solve
a downstream forecasting or projection task by learning a data-driven functional
mapping using deep neural networks. However, these networks are trained us-
ing curated and homogeneous climate datasets for specific spatiotemporal tasks,
and thus lack the generality of currently used physics-informed numerical mod-
els for weather and climate modeling. We develop and demonstrate ClimaX, a
flexible and generalizable deep learning model for weather and climate science
that can be trained using heterogeneous datasets spanning different variables, spa-
tiotemporal coverage, and physical groundings. ClimaX extends the Transformer
architecture with novel encoding and aggregation blocks that allow effective use
of available compute and data while maintaining general utility. ClimaX is pre-
trained with a self-supervised learning objective on climate datasets derived from
CMIP6. The pretrained ClimaX can then be fine-tuned to address a breadth of
climate and weather tasks, including those that involve atmospheric variables and
spatiotemporal scales unseen during pretraining. Compared to existing data-driven
baselines, we show that this generality in ClimaX results in superior performance
on benchmarks for weather forecasting and climate projections.

1 INTRODUCTION

Modeling weather and climate is an omnipresent challenge for science and society. Currently,
numerical methods for global modeling of weather and climate are parameterized via various general
circulation models (GCM) Lynch (2008). GCMs represent system of differential equations relating
the flow of energy and matter in the atmosphere, land, and ocean that can be integrated over time to
obtain forecasts for relevant atmospheric variables (Lynch, 2008; Bauer et al., 2015). While extremely
useful in practice, GCMs also suffer from many challenges, such as accurately representing physical
processes and initial conditions at fine resolutions, as well as technological challenges in large-scale
data assimilation and computational simulations Bauer et al. (2020). These factors limit their use in
many scenarios, especially in simulating atmospheric variables quickly at very short time scales (e.g.,
a few hours) or accurately at long time scales (e.g., beyond 5-7 days) Zhang et al. (2019).

In contrast, there has been a steady rise in data-driven approaches for forecasting of atmospheric
variables, especially for meteorological applications Grover et al. (2015); Dueben & Bauer (2018);
Weber et al. (2020); Scher & Messori (2019); Scher (2018); Kashinath et al. (2021); Schultz et al.
(2021); Reichstein et al. (2019); Huntingford et al. (2019); Schneider et al. (2017). The key idea here
is to train deep neural networks to predict the target atmospheric variables using decades of historical
global datasets, such as the ERA-5 reanalysis dataset (Hersbach et al., 2020). With growing compute
and data size, these models can achieve accuracies competitive with state-of-the-art numerical models
in many scenarios, such as nowcasting of precipitation (Ravuri et al., 2021; Sønderby et al., 2020)
and medium-range forecasting of variables like temperature, wind, and humidity (Weyn et al., 2020;
Rasp & Thuerey, 2021; Keisler, 2022; Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022). However,
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Figure 1: Variable tokenization tokenizes each variable independently, and position-based variable
aggregation reduces a sequence of length V × h× w to h× w.

unlike GCMs, these networks are not explicitly grounded in physics, and lack general-purpose utility
for Earth system sciences as they are trained for a specific predictive modeling task.

Variants of the aforementioned challenges apply broadly throughout machine learning (ML). In
disciplines such as natural language processing and computer vision, it is well acknowledged that ML
models trained to solve a single task using supervised learning are label-hungry during training and
brittle when deployed outside their training distribution Taori et al. (2020). Recent works have shown
that it is possible to mitigate the supervision bottleneck by pretraining Devlin et al. (2018); He et al.
(2022) large unsupervised “foundation” models (Bommasani et al., 2021) on huge passive datasets,
such as text and images scraped from the internet Ramesh et al. (2022); Brown et al. (2020); Liu et al.
(2021); Reed et al. (2022b). Post pretraining, there are many ways to finetune the same model on
arbitrary target task(s) with little to none (i.e., zero-shot) additional supervision. Besides low target
supervision, these models also generalize better to shifts outside their training distribution (Hendrycks
et al., 2020; Zhang et al., 2022), improving their reliability.

Inspired by the above successes, this work studies the question: how do we design and train a
foundation model for weather and climate that can be efficiently adapted for general-purpose tasks
concerning the Earth’s atmosphere? We propose ClimaX, a foundation model for weather and
climate. Empirically, we demonstrate that a single pretrained model can be finetuned for many
tasks (e.g., multi-scale weather forecasting, climate projections, downscaling) under a range of
operating conditions involving different spatiotemporal resolutions, geographical regions, and target
prediction variables, including those unseen during training. Notably, our benchmark results are
state-of-the-art on ClimateBench Watson-Parris et al. (2022) and competitive with the operational
Integrated Forecasting System (IFS) (Wedi et al., 2015) on WeatherBench Rasp et al. (2020).

2 APPROACH

2.1 INPUT REPRESENTATION

We are interested in gridded prediction tasks, wherein the model takes an input of shape V ×H ×W
and predicts an output of shape V ′ ×H ′ ×W ′. V is the number of input variables, which can be
weather conditions such as geopotential and temperature, or climate forcing factors such as CO2 and
SO2. H and W refer to the spatial resolution of the input data, which depends on how densely we
grid the globe. This general representation captures a broad variety of downstream tasks in Earth
systems science. Similarly, V ′, H ′,W ′ refer to the variables and spatial resolution of the predicted
outputs. Semantically, a H ×W map can represent the entire globe or a specific region.

2.2 MODEL ARCHITECTURE

We build ClimaX architecture upon Vision Transformers (ViT) (Dosovitskiy et al., 2020) because
of its flexibility and scalability. In addition, we propose two major architectural changes, namely
variable tokenization and variable aggregation to further improve the flexibility and generality.

Variable tokenization. Given an input of shape V ×H×W , ViT tokenizes the input into a sequence
of (H/p)× (W/p) = h× w patches, with each patch having a size of V × p2, where p is the patch
size. This tokenization scheme works well for image data, as V is always the RGB channels, which
is the same for all datasets. However, this is not true for climate and weather data, where the number
of physical variables can vary between different datasets. For example, in the CMIP6 project (Eyring
et al., 2016), each dataset contains simulated data of a different climate model, and thus has a different
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Figure 2: Pretraining phase of ClimaX. Variables are encoded using variable-separate tokenization,
and subsequently aggregated using variable aggregation. Together with position embedding and lead
time embedding those are fed to the ViT backbone.

set of underlying variables. Therefore, we propose variable tokenization, a novel tokenization scheme
that tokenizes each variable in the input separately. Specifically, each input variable as a spatial map
of shape H ×W is tokenized into a sequence of h× w patches, which results in V × h× w patches
in total. Finally, each input patch of size p2 is linearly embedded to a vector of dimension D, where
D is the chosen embedding size. The output of the variable tokenization module therefore has a
dimension of V × h× w ×D. Figure 1 illustrates our proposed tokenization scheme.

Variable aggregation. While variable tokenization allows ClimaX to learn from datasets with
varying numbers of input variables, it has two inherent problems. First, it results in a sequence of
length V × h × w which increases linearly with the number of variables. Since we use attention
to model the sequence, the memory complexity scales quadratically with the number of variables.
This is computationally expensive, as we can have up to 48 input variables in our experiments. We
therefore propose variable aggregation to solve the two mentioned challenges. For each spatial
position in the h× w map, we perform a cross-attention operation, in which the query is a learnable
vector, and the keys and values are the V embedding vectors of V variables at that position. The
cross-attention module outputs a single vector for each spatial position, thus reducing the sequence
length to h× w, significantly lowering the computational cost.

Transformer. Post variable aggregation, we seek a sequence model for generating the output tokens.
While in principle, one could use any sequence model, we propose to extend a standard Vision
Transformer (ViT). Moreover, since the standard ViT treats image modeling as pure sequence-to-
sequence problems, it can perform tasks that some other variations cannot (Liu et al., 2021; 2022),
such as learning from spatially incomplete data, where the input does not necessarily form a complete
grid. This is useful in the regional forecasting task we consider in Appendix C.1. In the experiments,
we report results with 8 attention layers, an embedding size of 1024, and a hidden dimension of
1024× 4. After the attention layers, we employ a 2-layer MLP prediction head that takes a token and
outputs a vector of size V ′ × p2, for more details see Appendix D.

2.3 DATASETS

Pretraining datasets. We use five datasets (MPI-ESM, TaiESM, AWI-ESM, HAMMOZ, CMCC)
of the CMIP6 archive (Eyring et al., 2016). Appendix F.1 describes the pretraining data in details.

Finetuning and evaluation datasets. For various weather related downstream tasks, we use the
ERA5 reanalysis data as described in Appendix F.2. For climate projections tasks, we evaluate
Climax on ClimateBench Watson-Parris et al. (2022), a recent climate projection benchmark.
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Figure 3: Global forecasting performance on ERA5 at 1.40625◦.

2.4 TRAINING

Pretraining. We pretrain ClimaX on CMIP6 data to predict future weather conditions given the
current conditions. That is, given the weather snapshot Xt of shape V ×H ×W at a particular time
t, ClimaX learns to predict the future weather scenario Xt+∆t of the same shape at lead time ∆t.
To obtain a pretrained model that is generally applicable to various temporal forecasting tasks, we
randomize the lead time from 6 hours to 168 hours (i.e., 1 week) during pretraining. We add the
lead time embedding to the tokens to inform the model of how long it is forecasting into the future.
The lead time embedding module is a single-layer MLP that maps a scalar to an embedded vector.
Figure 2 depicts the forward pass of ClimaX. For an input Xt, we sample a lead time ∆t ∼ U [6, 168]
and get the corresponding ground truth Xt+∆t. Input variables are tokenized separately using variable
tokenization, and are subsequently aggregated at each spatial location, resulting in a sequence of
h× w unified tokens. We add the tokens with the lead time embedding and positional embedding
before feeding the sequence to the ViT backbone. The output of the last attention layer is fed to a
prediction head, which transforms the sequence back to the original shape of V ×H×W . We employ
the latitude-weighted mean squared error (Rasp et al., 2020) as our objective function, detailed in
Appendix E.1.1.

3 EXPERIMENTS

We finetune ClimaX on a diverse set of downstream tasks to evaluate its performance and generality.
Due to limited space, this section only presents global forecasting results. We present applications of
ClimaX to regional forecasting, sub-seasonal-to-seasonal forecasting, climate projection, and climate
downscaling, as well as the scaling laws analysis of ClimaX and ablation studies in Appendix C.

Global forecasting. Given global weather conditions Xt at a particular time t, we forecast the
weather at a future time Xt+∆t, where ∆t is the lead time. The input variables include 6 atmospheric
variables at 7 vertical levels, 3 surface variables, and 3 constant fields, resulting in 48 input variables
in total. We detail the variables in Table 9. We evaluate ClimaX on predicting four target variables:
geopotential at 500hPa (Z500), the temperature at 850hPa (T850), the temperature at 2 meters from
the ground (T2m), and zonal wind speed at 10 meters from the ground (U10). We consider seven
lead times: 6 hours, {1, 3, 5, 7} days, 2 weeks, and 1 month, spanning a range from nowcasting to
short and medium-range forecasting. We consider predicting each target variable at each lead time a
separate task, and finetune a separate model for each task.
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We compare ClimaX to the Integrated Forecasting System (IFS), the current gold standard in weather
forecasting. Following (Rasp et al., 2020), we split the data into three sets, in which the training
data is from 1979 to 2015, the validation data is in 2016, and the test data is in 2017 and 2018. We
finetune ClimaX using the latitude-weighted MSE loss in Equation (1). We perform early stopping
on the validation loss for all deep learning models, and evaluate the best checkpoint on the test
set. For IFS, we download the predictions from the TIGGE archive (Bougeault et al., 2010) for the
year 2018. We compare two methods on latitude-weighted root mean squared error (RMSE) and
latitude-weighted anomaly correlation coefficient (ACC), two commonly used metrics in previous
works. The formulations of the two metrics are in Appendix G.1. Lower RMSE and higher ACC
indicate better performance.

Figure 3 shows the performance of ClimaX and the baselines at 1.40625◦. The performance of
ClimaX closely matches that of IFS even for short horizons, and is superior in forecasting at 7
days and beyond. The trends are similar for both RMSE and ACC. We include other additional
task-specific baselines (Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022) in Appendix G.2. These
baselines are trained on higher-resolution ERA5 (0.25◦) so are not directly comparable.
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R Radu, I Rozum, et al. Era5 hourly data on single levels from 1979 to present. Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), 10, 2018.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquı́n Muñoz-Sabater,
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A DETAILED BACKGROUND AND RELATED WORK

Current weather and climate models in use today rely extensively on numerical methods and com-
putational simulations to predict and understand the Earth’s weather and climate systems. These
tasks include various numerical weather prediction (NWP) systems which use computer simulations
to make short-term forecasts of weather conditions as well as climate models which use similar
techniques to simulate and predict the long-term changes in the Earth’s climate. Most notably, at the
core of both weather and climate models lie the same set of primitive equations.

For climate modeling, earth system models (ESM) Hurrell et al. (2013), or “coupled models”, that
couple together simulations which govern the atmosphere, cryosphere, land, and ocean processes are
considered the state-of-the-art. Primarily these simulations are based on general circulation models
(GCMs) Satoh (2004); Lynch (2008); Adopted (2014); Masson-Delmotte et al. (2021) which date
back to the works of Phillips (1956); Lorenz (1967) solving Navier-Stokes equations on a rotation
sphere to model fluid circulation. These models are often used to perform various factor sensitivity
studies to examine how the changes in certain forcing factors like greenhouse gas concentrations
can affect the global or regional climate and help in climate projections to help understand future
conditions.

Numerical Weather Prediction (NWP) models share many components of GCMs, especially the
atmospheric components Bauer et al. (2015); Lynch (2008); Kalnay (2003). However, incorporating
data assimilation Law et al. (2015); Grover (2022) which involves combining observations and various
measurements of the atmosphere and oceans together with these numerical models is important for
accurate forecasts and simulations. Another significant distinction between weather and climate
models is the framing of the solution for underlying equations: initial value problem for weather,
while boundary value problem for climate (Bauer et al., 2015). Different difficulty levels of these
solution approaches results in the fact where climate models tend to be global often at coarser
spatio-temporal resolutions while weather models can range from global to local and regional models
of very high spatio-temporal resolutions (Warner, 2010).

Despite their noted success, including the recent 2021 Nobel Prize in Physics Ravishankara et al.
(2022), there is considerable debate around the limitations of general circulation models (GCMs),
particularly structural errors across models and the fact that current GCMs are designed to reproduce
observed climate Balaji et al. (2022). The climate science community has been aware of these
challenges which resulted in the creation of Coupled Model Intercomparison Project (CMIP) as
a standardized protocol for evaluating and comparing the performance of different climate mod-
els (Meehl et al., 2000). As we will see in the following sections, not only has CMIP been playing a
crucial role in the advancement of our understanding of climate change and its potential impacts, its
evaluation procedure has resulted in enormous quantity of data making modern deep learning based
approaches quite attractive for many tasks. Notably, encoding this knowledge into a “foundation”
machine learning model with much faster inference and data assimilation capabilities can pave the
way for a much wider impact.

A.1 DATA SOURCES

Unlike data in computer vision or natural language processing, weather and climate data is not solely
based on sensed data, instead incorporates information from a diverse range of sources. For example,
reanalysis weather data blends meteorological observations with past short-range weather forecasts
via data assimilation Bauer et al. (2015). The data measurements themselves are highly heterogeneous,
representing various physical variables with different data types (e.g. pressure, temperature, humidity)
that are recorded at different, relatively sparse, spatial locations at different temporal frequencies.
These measurements can be integrated together with known physics inform the design of climate
simulations, which again produce data with different variables at different scales. From a machine
learning perspective, the plethora of available data thus spans multiple axes: from direct weather
measurements at land, sea, or atmosphere, over multiple decades of re-analyzed weather data at
different spatial scales, to physics-informed climate projections for various scenarios. Most notably,
the data shares the same set of primitive equations, but with fairly different characteristics. Below we
describe two of the most commonly used data sources for weather and climate modeling.
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A.1.1 CMIP6

The Coupled Model Intercomparison Project (CMIP) (Meehl et al., 2000) is an international effort
across different individual climate modeling groups to come together to compare and evaluate their
global climate models. While the main goal of CMIP is to improve the understanding of Earth’s
climate system and improve the accuracy of its simulations, the recent data from their experimental
runs is easily accessible on the CMIP6 (Eyring et al., 2016) archive. In CMIP6, where “6” refers to
the most recent phase of the project, 49 groups are involved with their experiments covering wide
range of climate variables including temperature, precipitation, sea level and others from hundreds of
models. This results in global projections of various climate scenarios from as early as 1850 onwards,
all following similar governing equations, but with different forcings, e.g., greenhouse gas emissions
that affect the climate.

A.1.2 ERA5

The ERA5 reanalysis archive Hersbach et al. (2018; 2020) of the European Center for Medium-Range
Weather Forecasting (ECMWF) is the predominant data source for learning and benchmarking
weather forecasting systems. Once completed, the ERA5 reanalysis is set to embody a detailed record
of the global atmosphere, land surface and ocean waves from 1950 onwards. The currently available
ERA5 reanalysis data combines the state of the art forecasting model called Integrated Forecasting
System (IFS) Wedi et al. (2015) of ECMWF with available observations to provide the best guess of
the state of the atmosphere, ocean-wave and land-surface quantities at any point in time. In its raw
form, the available reanalyzed data is huge: 40 years, from 1979 to 2018, on a 0.25◦ × 0.25◦ global
latitude-longitude grid of the Earth’s sphere, at hourly intervals with different climate variables at 37
different altitude levels plus the Earth’s surface. The grid overall contains 721× 1440 grid points for
latitude and longitude, respectively. The altitude levels are presented as pressure levels.

A.2 TASKS

Given the scale of data availability, increasing compute requirements of current numerical methods
despite it being difficult to incorporate real observational data into them, machine learning is increas-
ingly finding applications in many of the tasks related to weather and climate modeling. When it
comes to weather, the main task of interest is forecasting the future values of key weather variables.
These tasks can take the following forms depending on temporal and spatial horizons of interest:

• Global forecasting tasks that range from a few hours (i.e., nowcasting) to days and weeks in lead
time (i.e., short and medium range forecasting). Often these tasks are evaluated on the ERA5
reanalysis dataset (see Appendix A.1.2) with Operational IFS (Wedi et al., 2015) of the European
Center for Medium-Range Weather Forecasting (ECMWF) being the current state-of-the-art NWP
baselines.

• Regional forecasting tasks which could range from weather forecasting in continental North
America or Europe to individual state, county or city.

• Sub-seasonal to seasonal prediction (S2S) Vitart & Robertson (2018); Vitart et al. (2022) which
is the task of forecasting the weather with lead times between 2 weeks and 2 months. S2S bridges
the gap between weather forecasting and seasonal climate prediction, and is critical to disaster
mitigation. Often at such long horizons, predicting instantaneous values of key weather variables
can be a difficult task and therefore the focus is often on averaged value of key weather variables
over a certain time horizon, e.g. weekly average precipitation.

Whereas deep learning approaches for regional or S2S tasks are scarce, most of the recent and
concurrent work focuses on global forecasting tasks. Rasp & Thuerey (2021) were the first to use
pretraining on climate simulations to achieve good data-driven medium-range weather prediction
with a ResNet He et al. (2016), Weyn et al. (2020) used CNNs on a cubed sphere for global weather
prediction, Weyn et al. (2021) forecast weather sub-seasonally with a large ensemble of deep-learning
weather prediction models, Keisler (2022) applied a graph neural network based approach to weather
forecasting, Ravuri et al. (2021) use deep generative models of radar for precipitation nowcasting,
Arcomano et al. (2020) build a reservoir computing-based, low-resolution, global prediction model,
and MetNet Sønderby et al. (2020) takes as input radar and satellite data to forecast probabilistic
precipitation maps. These approaches are complemented by general machine learning models for
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fluid dynamics Li et al. (2020); Kochkov et al. (2021); Lu et al. (2021); Brandstetter et al. (2022a;b).
Finally, recent state-of-the-art neural weather models such as FourCastNet Pathak et al. (2022), Pangu-
weather Bi et al. (2022), or GraphCast Lam et al. (2022), which also perform global forecasting tasks,
use the highest resolution 0.25◦ ERA5 data, and are optimized on the respective hardware resources.

On the other hand, climate tasks have to deal with much longer time horizons. Possible categories of
tasks where machine learning can help include climate projection and climate model downscaling:

• Climate projection is the task of generating estimates of climate change under different future
socio-economic scenarios. Usually, this takes the form of figuring out the response of the climate
system to different forcing factors such as greenhouse gases and aerosol emissions. Climate
projection is a crucial task in understanding and preparing for the potential impacts of climate
change.
While the application of machine learning in this field is still in its early stages, recent efforts have
been made to standardize evaluation in this domain. One example of this is ClimateBench (Watson-
Parris et al., 2022), which is a benchmark dataset drawing on CMIP6 to provide an evaluation
framework for machine learning models that aim to improve the accuracy of climate projections.
This benchmark aims to provide a consistent and reliable evaluation method for various machine
learning models that are applied to climate projections.

• A more popular application of ideas in machine learning is towards downscaling of climate
model. Global climate models typically have a coarse spatial resolution, which means that they
can only provide a rough estimate of climate conditions at a local or regional scale. Moreover, the
simulations often reflect systematic biases that deviate from trends in the observation data. The
aim of climate model downscaling is to create locally accurate climate information from global
climate projections by relating those to observed local climatological conditions. This process
improves the spatial and temporal resolution of the data, making it more suitable for use in local and
regional analyses. Downscaling methods can be dived into dynamic approaches that relate outputs
of global climate models with those of regional climate models, and statistical approaches that
infer the desired transformations using data-driven approaches Wilby & Wigley (1997). Dynamic
approaches are physically consistent, but can be slow and have large biases, whereas statistical
approaches need large amounts of data to learn expressive mappings that are hold for target output
scenarios.

Similar to weather forecasting, deep learning has emerged as appealing alternative in climate science
as well. Recent approaches comprise surrogate models to emulate climate projections Weber et al.
(2020); Scher & Messori (2019); Scher (2018); Beusch et al. (2020); Mansfield et al. (2020), extract
contextual cues from existing datasets or simulations Reichstein et al. (2019); Huntingford et al.
(2019); Schneider et al. (2017), and perform climate model downscaling Sachindra et al. (2018);
Vandal et al. (2017); Baño-Medina et al. (2020). Climate model downscaling usually inputs low-
resolution reanalysis data and local orographic information to obtain high-resolution local information.
Many recent approaches are based on convolutional architectures Höhlein et al. (2020); Vaughan et al.
(2021); Markou et al. (2022).

A.3 FOUNDATION MODELS

Bommasani et al. (2021) gave the term “foundation models” to the emerging paradigm of training
scalable deep learning models on broad data via self-supervision which could then be adapted
(often via finetuning) to a wide range of downstream tasks. Current notable examples include
BERT (Devlin et al., 2018), GPT (Brown et al., 2020) and PaLM (Chowdhery et al., 2022), in
language, CLIP (Radford et al., 2021), Florence (Yuan et al., 2021), BEiT (Wang et al., 2022) for
vision-language. Outside applications on data crawled from web, this paradigm has also started finding
success in various scientific domains like protein design (Verkuil et al., 2022). Key significance of
such models has been identified as emergence with respect to model capabilities and homogenization
with respect to methodologies for different tasks, domains, and modalities, enabled by the principles
of transfer learning (Thrun & Pratt, 2012) at scale. While a foundation model itself should be
considered incomplete, it can provide a common basis from which various task-specific models can
be derived. Current research at the intersection of weather and climate science and ML has largely
focused on designing separate models for every task of interest despite potential availability of fairly
diverse large scale data with shared underlying physics and geology across these tasks. A few recent
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works have proposed pretraining techniques for satellite imagery and remote sensing Yuan & Lin
(2020); Cong et al. (2022); Reed et al. (2022a) but they have so far not been applied to multi-sensory
data and variables in weather and climate.

B DISCUSSION AND FUTURE WORK

The scaling of datasets, model architectures, and computation has resulted in a transformative impact
in various subdisciplines of artificial intelligence, from natural language processing to computer
vision, as well as scientific applications. In particular, it has led to the emergence of general-purpose
foundation models that are trained on large datasets and compute clusters, and can be efficiently
adapted to a variety of downstream tasks, both in terms of compute and data supervision. ClimaX
represents a pioneering effort to enable such broad scaling and generality in data-driven models
for weather and climate that goes beyond limitations of both traditional numerical modeling and
existing data-driven forecasting methods. Unlike ClimaX, numerical models scale only in terms
of computation and not in terms of dataset size, whereas existing data-driven models are typically
limited to specific tasks and lack general-purpose applicability across a wide range of tasks.

In addition to traditional considerations in language and vision, foundation models like ClimaX
open up new opportunities for scaling through the use of simulation datasets and grid resolutions.
To simplify our approach, we chose to use pretraining datasets that include standard variables
that have been benchmarked in previous research on data-driven forecasting Rasp et al. (2020);
Pathak et al. (2022). Additionally, we avoided datasets that simulate future scenarios under different
forcings to prevent any potential leakage for the climate projection task. Future research could
explore incorporating both observational and simulated datasets that include a wider range of climate
variables, higher spatiotemporal resolutions, and even extend into future scenarios. Further, we
showed that resolution plays a crucial role in scaling of ClimaX. Due to our compute restrictions,
we trained ClimaX on low to moderate resolutions. Nevertheless, our empirical trends suggest that
scaling to higher resolutions (0.25◦) is likely to lead to even better results. Future scaling efforts
can benefit from better sequence modeling architectures, especially those designed for multimodal
spatiotemporal inputs. As we saw in ClimaX, the number of channels for climate datasets is much
larger than those in standard multimodal settings (e.g., audio-video, vision-language). Moreover,
in practice, there is also a significant range of resolutions across different climate datasets. This
heterogeneity drastically increases the raw length of input sequences for standard architectures such
as ViT. In the future, we believe that investigating single multi-scale architectures (e.g., Fan et al.
(2021)) can potentially aid in scaling to such diverse multi-resolution and multi-modal datasets by
learning to infer features relevant to atmospheric phenomena at increasing spatial resolutions.

In conclusion, we believe that the generality of our approach has potential applications beyond
the tasks considered in this work. It would be interesting to explore the generalization of a pre-
trained ClimaX backbone to other Earth systems science tasks, such as predicting extreme weather
events (Miralles et al., 2019; Sillmann et al., 2017) and assessing anthropogenic contributions to
climate change (Rosenzweig et al., 2008; Höök & Tang, 2013), as well as broader domains that
are closely tied to weather and climate conditions, such as agriculture, demography, and actuarial
sciences.

C ADDITIONAL EXPERIMENTS

Neural baselines. In global forecasting, we compare ClimaX with IFS (Wedi et al., 2015), the
current gold standard in weather forecasting. In tasks we do not have a baseline, we compare with
two CNN based baselines UNet (Ronneberger et al., 2015) and ResNet He et al. (2016) with specific
architecture details borrowed from (Gupta & Brandstetter, 2022; Rasp et al., 2020), as described in
Appendix D.2.

C.1 FORECASTING

Regional forecasting. We next evaluate ClimaX on regional forecasting of relevant variables in
North America, where the task is to forecast the future weather in North America given the current
weather condition in the same region. We create a new dataset from the ERA5 data at 1.40625◦
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Figure 4: Regional (North America) forecasting performance.

Table 1: RMSE of ClimaX and baselines on 5.625◦ ERA5-S2S prediction tasks. See also ?? in
Appendix.

T850 T2m U10

Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6 Weeks 3-4 Weeks 5-6

ResNet 2.12 2.13 1.88 2.16 1.91 1.94
UNet 1.91 1.95 1.67 1.79 1.85 1.90
Cli-ViT 1.96 1.96 1.79 1.90 1.83 1.92
ClimaX 1.89 1.92 1.66 1.70 1.81 1.86

that has the same set of variables but just focuses on the North America region. We call this dataset
ERA5-NA and present details of how to construct it in Appendix F.2. Training, validation, and test
splits are done similarly to Section 3. Since the task has not been considered in previous works, we
compare ClimaX with the two CNN baselines ResNet and UNet, and the scratch-trained version
of ClimaX, which we refer to as Cli-ViT. In addition, we finetune two ClimaX models, in which
one was pretrained on CMIP6 at 1.40625◦, and the other was pretrained on 5.625◦ data. To finetune
the low-resolution model on higher-resolution data, we follow the common practice of interpolating
the positional embedding (Dosovitskiy et al., 2020; Touvron et al., 2021). We denote this model as
ClimaX-pos-interp. We evaluate all methods on predicting Z500, T2m, and T850 at lead times of
3, 5, and 7 days. Latitude-weighted RMSE is used as the evaluation metric. Figure 4 compares the
performance of ClimaX and the baselines. ClimaX is the best performing method among different
target variables and lead times. Interestingly, even though pretrained on data at a lower resolution,
ClimaX-pos-interp achieves the second best performance in predicting Z500 and T850, and only
underperforms ResNet in predicting T2m at 3-day lead time. This result shows that ClimaX can gain
strong performance on tasks that have different spatial coverage or even different spatial resolution
from pretraining.

Sub-seasonal to seasonal prediction. Sub-seasonal to seasonal (S2S) prediction is the task
of forecasting at a time range between 2 weeks and 2 months (Vitart & Robertson, 2018), which
bridges the gap between weather forecasting and climate projection. Compared to the other two
well-established tasks, S2S prediction has received much less attention, despite having a significant
socioeconomic value in disaster mitigation efforts. To the best of our knowledge, S2S prediction
has not been considered in previous deep learning works. Here, following the S2S competition
(https://s2s-ai-challenge.github.io/), we aim to predict the biweekly average statistics of weeks 3-4
and weeks 5-6, which correspond to lead times of 2 weeks and 4 weeks, respectively. We construct
ERA5-S2S, a new dataset from 5.625◦ ERA5 that has the same input variables, but the output
variables are averaged from the lead time to 2 weeks ahead into the future. We compare ClimaX
with ResNet, UNet, and Cli-ViT on the S2S prediction of four target variables: T850, T2m, U10, and
V10. Table 1 compares the RMSE of ClimaX and the baselines. ClimaX achieves the lowest error
for all variables, and the performance gap with the best baseline UNet is larger at increasing lead
times. ClimaX also has significant performance gains over its scratch-trained counterpart Cli-ViT,
showing the effectiveness of our pretraining procedure in capturing features that are generally useful
for various temporal prediction tasks.

18

https://s2s-ai-challenge.github.io/


Published as a workshop paper at ”Tackling Climate Change with Machine Learning”, ICLR 2023

Table 2: Performance of ClimaX and the baselines on ClimateBench. Spatial and Global denote
the normalized root mean squared error NRMSEs and the NRMSE of the global mean NRMSEg,
respectively. Total is a weighted combination of Spatial and Global.

Surface temperature Diurnal temperature range Precipitation 90th percentile precipitation

Spatial Global Total RMSE Spatial Global Total RMSE Spatial Global Total RMSE Spatial Global Total RMSE

ClimateBench-NN (reproduced) 0.123 0.080 0.524 0.404 7.465 1.233 13.632 0.150 2.349 0.151 3.104 0.553 3.108 0.282 4.517 1.594
ClimateBench-NN (paper) 0.107 0.044 0.327 N/A 9.917 1.372 16.778 N/A 2.128 0.209 3.175 N/A 2.610 0.346 4.339 N/A
Clima-ViT 0.086 0.044 0.305 0.362 6.997 1.759 15.792 0.146 2.224 0.241 3.430 0.550 2.800 0.329 4.447 1.579
ClimaX 0.086 0.043 0.300 0.362 7.148 0.961 11.952 0.147 2.360 0.206 3.390 0.554 2.739 0.332 4.397 1.575
ClimaXfrozen 0.085 0.043 0.297 0.360 6.688 0.810 10.739 0.144 2.193 0.183 3.110 0.549 2.681 0.342 4.389 1.572

Table 3: Performance of ClimaX and the baselines on downscaling from MPI-ESM (5.625◦) to ERA5
(1.40625◦).

Z500 T850 T2m

RMSE Pearson Mean bias RMSE Pearson Mean bias RMSE Pearson Mean bias

ResNet 825.75 0.96 −108.54 3.60 0.96 0.19 2.89 0.98 0.14
UNet 858.35 0.95 35.10 3.66 0.96 −0.34 2.95 0.98 0.16
Cli-ViT 811.61 0.96 −54.32 3.58 0.97 −0.29 2.80 0.99 −0.06
ClimaX 807.43 0.96 2.70 3.49 0.97 −0.11 2.79 0.99 −0.06

C.2 CLIMATE PROJECTION

To further test the generality of ClimaX, we evaluate our model on ClimateBench (Watson-Parris et al.,
2022), a recently introduced climate projection benchmark. The aim of ClimateBench is to predict
the annual mean global distributions of surface temperature, diurnal temperature range, precipitation,
and the 90th percentile of precipitation, given four anthropogenic forcing factors: carbon dioxide
(CO2), sulfur dioxide (SO2), black carbon (BC), and methane (CH4). This is not a temporal modeling
task, as we do not predict the future given the past. Instead, we answer questions like what will be the
annual mean temperature for a specified CO2 level? In particular, note that input variables and the
task itself are completely different from pretraining.

As the input and output variables are unseen during pretraining, we replace the pretrained embedding
layers and prediction heads with newly initialized networks, while keeping the attention layers and
the variable aggregation module. We consider two finetuning protocols, in which we either freeze1

(ClimaXfrozen) or finetune (ClimaX) the attention layers. The details of the finetuning pipeline are
in Appendix E.2.4. We compare ClimaX with ClimaXfrozen, Cli-ViT, and the best baseline from
ClimateBench. Following (Watson-Parris et al., 2022), we use the standard mean squared error
(Equation (1) without the weighting term) as the loss function. We evaluate all methods on RMSE,
NRMSEs (Spatial), NRMSEg (Global), and Total = NRMSEs + 5 × NRMSEg (Watson-Parris et al.,
2022), see Table 2. Details of the metrics are in Appendix G.1. ClimaXfrozen and ClimaX perform
best in predicting two temperature-related variables, demonstrating that pretrained attention layers
can serve as a strong feature extractor in seemingly unrelated tasks. Since downstream data is
scarce (ClimateBench has only 754 data points), further finetuning the attention layer can lead to
overfitting and thus slightly hurt the performance. In two precipitation-related tasks, ClimaXfrozen
slightly underperforms ClimateBench baseline in terms of NRMSEs and NRMSEg , but outperforms
on RMSE. We hypothesize that this was because ClimaX did not observe the precipitation variable
during pretraining, which has very different behaviors from other variables.

C.3 CLIMATE MODEL DOWNSCALING

Climate models are often run at coarse grids due to their high computational cost. Although these
predictions are useful in understanding large-scale climate trends, they do not provide sufficient detail
to analyze regional and local phenomena. Downscaling aims to obtain higher-resolution projections
and reduce biases from the outputs of these models. To evaluate the applicability of ClimaX to the
task of climate model downscaling, we construct a new dataset based on CMIP6 and ERA5 data
sources for coarse inputs and higher resolution targets. Specifically, we use all MPI-ESM, a dataset
from CMIP6, and its variables listed in Table 8 at 5.625◦ as input, and train separate models to

1We finetune the LayerNorm in ClimaXfrozen, as suggested by Lu et al. (2022).
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Figure 5: ClimaX scaling performance with respect to model capacity. The RSME on ERA5 3-day
forecasting is shown for different variables as a function of the number of CMIP6 5.625◦ data seen
during pre-training. Curves indicate different model sizes.

1 3 5 7
0

100

200

300

400

500

R
M

S
E

(←
)

Z500

1 3 5 7
0.0

0.5

1.0

1.5

2.0

2.5

T850

1 3 5 7
0.0

0.5

1.0

1.5

2.0

T2M

1 3 5 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

U10

Leadtime [days]
ClimaX (5.625°) ClimaX (1.40625°)

1 3 5 7
0.0

0.2

0.4

0.6

0.8

1.0

A
C

C
(→

)

Z500

1 3 5 7
0.0

0.2

0.4

0.6

0.8

T850

1 3 5 7
0.0

0.2

0.4

0.6

0.8

T2M

1 3 5 7
0.0

0.2

0.4

0.6

0.8

U10

Leadtime [days]
ClimaX (5.625°) ClimaX (1.40625°)

Figure 6: Scaling performance with respect to data resolution. ClimaX (1.40625◦) achieves consis-
tently better performance.

downscale to each ERA5 target variable at 1.40625◦. We compare ClimaX with Cli-ViT and the
two CNN baselines, UNet and ResNet, as most recent deep downscaling methods (Vandal et al.,
2017; Rodrigues et al., 2018; Höhlein et al., 2020; Vandal et al., 2019; Liu et al., 2020) are based
on convolution. We were not able to compare with YNet (Liu et al., 2020), the current best method
on deep downscaling as we did not have access to high-resolution auxiliary data such as elevation
and topographical information. For all methods, we first bilinearly interpolate the input to match the
resolution of the desired output before feeding it to the model. We evaluate all methods on RMSE,
Pearson correlation, and Mean bias, which were commonly used in existing deep downscaling
works (Vandal et al., 2017; Liu et al., 2020). Details of the metrics are in Appendix G.1.

Table 3 (and ?? in Appendix) compares ClimaX and the baselines quantitatively. ClimaX achieves
the lowest RMSE and a mean bias closest to 0 for all three target variables, and performs similarly to
the baselines in terms of Pearson correlation. During pretraining ClimaX has successfully captured
the spatial structure of weather data, which helps in downstream tasks like downscaling. Figure 17 in
Appendix visualizes the downscaled predictions of ClimaX for the three target variables. The input
is at a much lower resolution and contains a lot of bias compared to the ground truth. While the
prediction is missing some fine details, it has successfully captured the general structure of the ERA5
data and removed input biases.

C.4 SCALING LAWS ANALYSIS

Transformers have shown favorable scaling properties for language (Kaplan et al., 2020; Hoffmann
et al., 2022), vision (Zhai et al., 2022), or even multi-modal tasks (Henighan et al., 2020; Hendricks
et al., 2021; Reed et al., 2022b). That is, their performance improves with respect to data size and
model capacity given sufficient compute. In this section, we study the scaling laws of ClimaX.
Figure 5 presents the performance of ClimaX as a function of data size and model capacity. The
x-axis is the pretraining data size measured in Gigabytes, and corresponding to 1 to 5 CMIP6 datasets.
The y-axis shows the RMSE of ClimaX on the 3-day forecasting task, comparing four ClimaX
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models of different size by varying the embedding dimension from 128 to 1024. All experiments
are conducted on the 5.625◦ data. RMSE values of the two biggest models decreases consistently as
we increase the data and model size, highlighting the ability of ClimaX to learn from diverse and
heterogeneous data sources. For the two smaller models increasing data size does not gain much
improvement, and can sometimes event hurt performance. These results show that larger models not
only perform better by simply pretraining on more data, but are also more data efficient.

In addition to data size and model capacity, data resolution is another important scaling dimension in
the context of weather and climate. In many vision tasks such as classification, understanding the
general, high-level structure of the image is sufficient to make accurate predictions. However, to
model the underlying complex physical processes that govern weather and climate, it is important
to capture fine-grained details. High-resolution data contains finer details and local processes of
weather conditions that are not present in the low-resolution data, and thus provides stronger signals
for training deep learning models. Figure 6 compares the performance of ClimaX pretrained and
finetuned on 5.625◦ and 1.40625◦ data on global forecasting. Except for T2m at 1 day and 3 days
lead times, ClimaX (1.40625◦) consistently achieves lower RMSE and higher ACC than the low-
resolution model. We note that for the high-resolution data we have to use a larger patch size (4
compared to 2 for low-resolution data) due to lack of memory issue. We can further improve the
performance of ClimaX on the 1.40625◦ data by reducing the patch size, as the model is able to
capture better details.

C.5 ABLATION STUDIES

In the main forecasting results, we finetune a separate ClimaX model for each target variable at each
lead time, as we found this protocol led to the best performance. However, this can be computationally
expensive, as finetuning cost scales linearly with respect to the number of target variables and lead
times. In this section, we consider different finetuning alternatives to investigate the trade-off between
computation and performance.

C.5.1 SHOULD WE FINETUNE CLIMAX FOR EACH VARIABLE SEPARATELY OR ALL AT ONCE?

Instead of finetuning ClimaX for each target variable separately, we could alternatively finetune once
to predict all variables in the input simultaneously, which we denote as ClimaX-all-vars. Figure 7
shows that ClimaX-all-vars achieves comparable performance to ClimaX in most of the tasks and
only underperforms for forecasting T2m. This suggests that with a limited budget, one can finetune
ClimaX to predict all target variables at the same time without losing much performance.

C.5.2 SHOULD WE DO ITERATIVE FORECAST OR DIRECT FORECAST?

To avoid finetuning a different model for each lead time, we can finetune ClimaX to make predictions
at a short horizon such as 6 hours, and roll out the predictions during inference to make forecasts
at longer horizons. We call this model ClimaX-iter, where iter stands for iterative prediction (Rasp
et al., 2020). We note that in order to roll out more than one step, ClimaX-iter must predict for all
input variables, or in other words. This provides the benefit of finetuning a single model that can
predict for any target variable at any lead time. Figure 7 shows that ClimaX-iter works reasonably
well up to 1-day prediction, but the performance degrades significantly at longer lead times. This is
not surprising, because ClimaX-iter is not finetuned to predict multiple steps into the future, leading
to quick error accumulation. One can employ a multi-step objective for finetuning as in Pathak et al.
(2022) to achieve better results.

C.5.3 CAN WE FINETUNE CLIMAX TO WORK FOR ALL LEAD TIMES?

Another way to avoid finetuning for each lead time separately is to finetune a lead-time-conditioned
model. Specifically, during finetuning, we randomize the lead time from 6 hours to 7 days, resembling
the pretraining setting. Note that unlike ClimaX-iter, we still have to finetune a separate model for each
target variable. We call this model ClimaX-cont, wherein cont stands for continuous, a standard term
used in previous works (Rasp et al., 2020). Figure 7 shows that ClimaX-cont performs competitively
on 6-hour to 7-day forecasting, but fails to extrapolate to 2 weeks and 1 month lead times that are
unseen during training. One can also randomize the lead time from 6 hours to 1 month, but that means
the model sees much fewer data points for each target lead time, potentially hurting the performance.
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Figure 7: Performance of ClimaX and its variations on weather forecasting. ClimaX-cont is a
lead-time-conditioned model that we finetune to make predictions at 6 hours to 7 days. ClimaX-iter
forecasts at a 6-hour lead time and rolls out the predictions to forecast at longer horizons. ClimaX-
all-vars predicts the future conditions of all variables in the input at particular lead-times.

The cost for finetuning each set of weights is a constant C, which is about 15 hours on an 8 ×
V100s. Among different finetuning protocols, ClimaX is the most expensive, whose total cost is
C×#variables×#lead times, scaling linearly with the number of target variables and lead times.
Following ClimaX are ClimaX-all-vars and ClimaX-cont, whose total costs are C ×#lead times
and C ×#variables, respectively. Finally, ClimaX-iter is the cheapest finetuning protocol, where
we only have to finetune a single model that works for all target variables and at all lead times. The
performance is proportional to the computational cost, as ClimaX is the best performing model, while
ClimaX-iter is the worst.

D MODEL DETAILS

This section presents the implementation details and hyperparameters of ClimaX and the two CNN
baselines UNet and ResNet.

D.1 CLIMAX

D.1.1 IMPLEMENTATION DETAILS

ClimaX receives a tensor of shape V ×H ×W and outputs a tensor of shape V ′ ×H ×W , where
the number of input and output variables V and V ′ can vary between different datasets2. To do that,
we assume a set V that contains all possible variables we could encounter during pretraining and
finetuning. Each variable in V has a separate token embedding layer.

The variable tokenization module tokenizes the input to a sequence of V × h× w tokens, with each
token being a vector of size p2. After that, for each token, we extract the corresponding embedding
layer that transforms the token to a vector of dimension D. Each embedding layer is a single
convolution layer with in channels = 1, out channels = D, kernel size = p, stride = p. This
results in a tensor of shape V × h× w ×D.

To differentiate between tokens of different input variables, we add the sequence with a variable
positional embedding, which is a tensor of shape |V| ×D. For each input variable, we extract the

2The spatial resolution H ×W can also vary. In that case, we employ the common practice of interpolating
the positional embedding, and everything else remains the same (Dosovitskiy et al., 2020; Touvron et al., 2021).
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corresponding variable positional embedding to add to its tokens. After that, all tokens go through
the variable aggregation module, which outputs a tensor of shape h× w ×D.

The tokens are then fed to the attention layers, which output a tensor of the same shape h× w ×D.
The prediction head takes each token of dimension D and maps it to a vector of dimension |V| × p2,
and the output is reshaped to |V| ×H ×W . Finally, we extract predictions of V ′ target variables and
compute the loss.

D.1.2 HYPERPARAMETERS

Table 4: Default hyperparameters of ClimaX

Hyperparameter Meaning Value

V Default variables All ERA5 variables in Table 9
|V| Number of default variables 48

p Patch size 2 for 5.625◦
4 for 1.40625◦

D Embedding dimension 1024
Depth Number of ViT blocks 8
# heads Number of attention heads 16

MLP ratio Determine the hidden dimension of
the MLP layer in a ViT block 4

Prediction depth Number of layers of the prediction head 2
Hidden dimension Hidden dimension of the prediction head 1024
Drop path For stochastic depth (Huang et al., 2016) 0.1
Dropout Dropout rate 0.1

D.2 CNN BASELINES

D.2.1 RESNET HYPERPARAMETERS

We use the following hyperparameters for ResNet in all of our experiments.

Table 5: Default hyperparameters of ResNet

Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Hidden dimension Number of output channels of each residual block 128
Residual blocks Number of residual blocks 28
Dropout Dropout rate 0.1

D.2.2 UNET HYPERPARAMETERS

We borrow our UNet implementation from PDEArena (Gupta & Brandstetter, 2022). We use the
following hyperparameters for UNet in all of our experiments.
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Table 6: Default hyperparameters of UNet

Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1

Channel multiplications Determine the number of output channels
for Down and Up blocks [1, 2, 2, 4]

Blocks Number of blocks 2
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0.1

D.2.3 OTHER IMPLEMENTATION DETAILS

Following the implementation of ResNet in Rasp et al. (2020); Rasp & Thuerey (2021); Ernst (2021),
we found the following details important for the performance of both CNN baselines:

• Use Batch normalization
• Use Leakyrelu with a slope of 0.3 as the activation function
• Postnorm instead of Prenorm
• Use periodic convolutions in the longitude direction but not the latitude direction.
• Use a kernel size of 7 in the first CNN layer.

E TRAINING DETAILS

Data normalization We normalized all inputs during pre-training as well as fine-tuning. For each
variable, at each pressure level (for atmospheric variables), we compute the mean and standard
deviation to normalize them to zero mean and unit variance. We de-normalize the predictions to get
back to the original range before computing evaluation metrics.

Software and hardware stack We use PyTorch (Paszke et al., 2019), timm (Wightman, 2019),
numpy (Harris et al., 2020) and xarray (Hoyer & Hamman, 2017) to manage our data and model
training. We used 32GB NVIDIA V100 devices for training. For pretraining we distribute the batch
across 80 V100s on AzureML. We leverage fp16 floating point precision in our model.

E.1 PRETRAINING

E.1.1 OBJECTIVE

We use the loss function in Equation (1) for pretraining. Given the prediction X̃t+∆t and the ground
truth Xt+∆t, the loss is computed as:

L =
1

V ×H ×W

V∑
v=1

H∑
i=1

W∑
j=1

L(i)(X̃v,i,j
t+∆t −Xv,i,j

t+∆t)
2, (1)

in which L(i) is the latitude weighting factor:

L(i) =
cos(lat(i))

1
H

∑H
i′=1 cos(lat(i′))

, (2)

where lat(i) is the latitude of the corresponding ith row of the grid.

E.1.2 OPTIMIZATION

We used the AdamW optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) with parameters
(β1 = 0.9, β2 = 0.95). We used weight decay of 1e− 5 for all parameters except for the positional
embedding. We used a learning rate of 5e − 4, with a linear warmup schedule for 10000 steps (5
epochs), followed by a cosine-annealing schedule for 190000 steps (95 epochs).
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E.2 FINETUNING

E.2.1 OBJECTIVE

We use lat-weighted MSE in Equation (1) for finetuning ClimaX in temporal forecasting and down-
scaling tasks. In ClimateBench, we finetune using standard MSE without the weighting term, as this
led to better results and was suggested by (Watson-Parris et al., 2022).

E.2.2 OPTIMIZATION

For all tasks, we used AdamW with parameters (β1 = 0.9, β2 = 0.999). We used weight decay of
1e− 5 for all parameters except for the positional embedding. We used a linear warmup schedule for
10000 steps (5 epochs), followed by a cosine-annealing schedule for 90000 steps (45 epochs). The
learning rate for each task is as follows:

Table 7: Learning rate for finetuning ClimaX in different downstream tasks

Task Learning rate

Weather forecasting 5e− 7
Climate projection 5e− 4
Climate downscaling 5e− 5

We used a small learning rate for weather forecasting as the task resembles pretraining. For downscal-
ing, we used a larger learning rate, as the nature of the task is different from pretraining, even though
the input variables are similar. In climate projection, we needed to initialize new weights for the
embedding layers and prediction heads, and thus used a similar learning rate to training from scratch.

E.2.3 FINETUNING CLIMAX FOR REGIONAL FORECASTING

Figure 8 illustrates the finetuning process of ClimaX on this task, where the only difference from
global forecasting is the input now only contains tokens that belong to North America.

⋮

Δ𝑡

U500

Q850

Position

ℒ(𝜃, ℬ)

Lead time

Targets at lead time Δ𝑡

Scalar Embed

T850

ClimaX

Figure 8: Finetuning setup for Regional Forecasting in North America.

E.2.4 FINETUNING CLIMAX FOR CLIMATE PROJECTION

Figure 9 illustrates the finetuning pipeline of ClimaX for ClimateBench. We introduce two compo-
nents to the pipeline in Figure 2. We use a history of the preceding ten years of the forcing factors to
make predictions for a particular year, creating an input of shape T × V ×H ×W . Each time slice
of the input goes through variable tokenization, variable aggregation, and the attention layers as usual,
which output a feature tensor of shape T × h× w ×D, where D is the embedding size. The feature
tensor then goes through a global average pooling layer, reducing the dimension to T ×D. Finally,
the 10-year history is aggregated using a cross-attention layer before being fed to the prediction
head, which linearly transforms the D-dimensional feature vector to a H × W map. The history
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aggregation and the global pooling modules are the two additions to the original ClimaX architecture.
These architectural designs are inspired by the neural network baseline in (Watson-Parris et al., 2022).

ClimaX
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⊕

⋮

⊕
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Position Time hist.
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Var. ID

Patch Embed

Cross-attention
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d

Average surface temperature
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o
lin

g
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History 
Aggregation

Figure 9: Finetuning pipeline for ClimateBench. A different set of input and output variables requires
different embedding layers and prediction heads. Attention layers can be frozen or finetuned.

F DATASETS

F.1 CMIP6-CLIMAX

We created CMIP6-ClimaX for pretraining ClimaX, which consists of 5 datasets from the CMIP6
project. We downloaded the datasets from the official CMIP6 search interface at https://esgf-
data.dkrz.de/search/cmip6-dkrz/. These datasets share the following attributes:

• Experiment ID: historical
• Table ID: 6hrPlevPt, i.e., 6-hourly data on pressure levels.
• Variant label: r1i1p1f1. The variant label distinguishes among closely related simulations

by a single model, in which “r” specifies the initial condition, “i” specifies the observational
dataset and initialization method used for determining the initial condition, “p” specifies the
perturbed physics version of the model, and “f” specifies the forcing index.

All datasets have a temporal coverage from 1850 to 2015 and a temporal resolution of 6 hours. We
chose these datasets as they contain similar climate variables at similar vertical levels to ERA5. We
note that there are more than 5 datasets from CMIP6 that suit our selection criteria, but we were
not able to download others due to some issues on the data servers. We regridded these datasets to
5.625◦ and 1.40625◦ using the xesmf Python package (Zhuang, 2018) using bilinear interpolation.
We provide a detailed description of these 5 data sources and the available variables we used to
construct CMIP6-ClimaX in Table 8.

We note that AWI and HAMMOZ are not the best data sources for higher resolution 1.40625◦

training, because their original resolution at 250 km is lower than 1.40625◦, which is about 156 km.
We wanted to use other higher-resolution datasets but were not able to download them. We believe
pretraining on other high-resolution datasets would lead to better performance.

F.2 ERA5

We use the preprocessed version of ERA5 from WeatherBench (Rasp et al., 2020) for finetuning
ClimaX. WeatherBench was created as a standard benchmark data and evaluation framework for
comparing data-driven weather forecasting models. WeatherBench regridded the original ERA5 at
0.25◦ to three lower resolutions: 5.625◦, 2.8125◦, and 1.40625◦. See https://confluence.
ecmwf.int/display/CKB/ERA5%3A+data+documentation for more details of the raw
ERA5 data. Table 9 summarizes the variables we use for finetuning ClimaX.
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Table 8: Resolution and variables of CMIP6-ClimaX dataset used for pretraining. Static represents
variables don’t depend on time, Single represents surface variables, and Atmospheric represents
time-varying atmospheric properties at the chosen altitudes.

Data Source Original resolution Variables

Type Abbrev. Levels

MPI 100km

Single t2m
Single u10
Single v10
Atmospheric z 50, 250, 500, 600, 700, 850, 925
Atmospheric u 50, 250, 500, 600, 700, 850, 925
Atmospheric v 50, 250, 500, 600, 700, 850, 925
Atmospheric t 50, 250, 500, 600, 700, 850, 925
Atmospheric q 50, 250, 500, 600, 700, 850, 925

Tai 100km

Single t2m
Atmospheric z 250, 500, 600, 700, 850, 925
Atmospheric u 250, 500, 850
Atmospheric v 250, 500, 850
Atmospheric t 250, 500, 850
Atmopheric q 250, 500, 600, 700, 850, 925

AWI 250km

Single t2m
Single u10
Single v10
Atmospheric z 50, 250, 500, 600, 700, 850, 925
Atmospheric u 50, 250, 500, 600, 700, 850, 925
Atmospheric v 50, 250, 500, 600, 700, 850, 925
Atmospheric t 50, 250, 500, 600, 700, 850, 925
Atmospheric q 50, 250, 500, 600, 700, 850, 925

HAMMOZ 250km

Single t2m
Single u10
Single v10
Atmospheric z 50, 250, 500, 600, 700, 850, 925
Atmospheric u 50, 250, 500, 600, 700, 850, 925
Atmospheric v 50, 250, 500, 600, 700, 850, 925
Atmospheric t 50, 250, 500, 600, 700, 850, 925
Atmospheric q 50, 250, 500, 600, 700, 850, 925

CMCC 100km

Atmospheric z 50, 250, 500, 600, 700, 850, 925
Atmospheric u 50, 250, 500, 600, 700, 850, 925
Atmospheric v 50, 250, 500, 600, 700, 850, 925
Atmospheric t 250, 500, 850

F.2.1 ERA5-NA

We constructed ERA5-NA from ERA5 to evaluate ClimaX and the baselines on regional
forecasting. ERA-NA has the same set of variables as in Table 9, but only contains data
that belongs to the North America region. To do this, we first identified the latitude
and longitude range to form a rectangular area that encapsulates North America, using the
standard CORDEX domains https://cordex.org/wp-content/uploads/2012/11/
CORDEX-domain-description_231015.pdf. For each data sample, we then extracted the
spatial positions that fall into this range, forming in ERA5-NA.

F.2.2 ERA-S2S

We built ERA5-S2S from ERA5 to serve as a benchmark dataset for sub-seasonal to seasonal
prediction. ERA5-S2S consists of two sub-datasets, whose the goals are to predict the biweekly
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Table 9: ECMWF variables used in our ERA5 dataset. Static represents variables don’t depend
on time, Single represents surface variables, and Atmospheric represents time-varying atmospheric
properties at the chosen altitudes.

Type Variable name Abbrev. ECMWF ID Levels

Static Land-sea mask LSM 172
Static Orography

Single 2 metre temperature T2m 167
Single 10 metre U wind component U10 165
Single 10 metre V wind component V10 166

Atmospheric Geopotential Z 129 50, 250, 500, 600, 700, 850, 925
Atmospheric U wind component U 131 50, 250, 500, 600, 700, 850, 925
Atmospheric V wind component V 132 50, 250, 500, 600, 700, 850, 925
Atmospheric Temperature T 130 50, 250, 500, 600, 700, 850, 925
Atmospheric Specific humidity Q 133 50, 250, 500, 600, 700, 850, 925
Atmospheric Relative humidity R 157 50, 250, 500, 600, 700, 850, 925

average statistics of target variables in weeks 3 and 4, and weeks 5 and 6, respectively. The input
includes all variables in Table 9, while the output variables are are averaged over two weeks, starting
from the start of week 3 (5) and to the end of week 4 (6).

F.3 CLIMATEBENCH

We refer to Watson-Parris et al. (2022) for complete details of ClimateBench.

G QUANTITATIVE EVALUATION

G.1 METRICS

This section presents all evaluation metrics we use in Section 3. For all metrics, we denote X̃ and
X as the prediction and ground truth, which have a shape of N ×H ×W , where N is the number
of forecasts, or the number of test samples, H × W is the spatial resolution. L(i) is the latitude
weighting term to account for the non-uniformity in areas of the grid cells. We have removed the
time notation for simplicity.

G.1.1 WEATHER FORECASTING METRICS

Root mean square error (RMSE)

RMSE =
1

N

N∑
k=1

Ã
1

H ×W

H∑
i=1

W∑
j=1

L(i)(X̃k,i,j −Xk,i,j)2. (3)

Anomaly correlation coefficient (ACC) Anomaly correlation coefficient (ACC) is the spatial
correlation between prediction anomalies X̃

′
relative to climatology and ground truth anomalies X

′

relative to climatology:

ACC =

∑
k,i,j L(i)X̃

′

k,i,jX
′

k,i,j»∑
k,i,j L(i)X̃

′2
k,i,j

∑
k,i,j L(i)X

′2
k,i,j

, (4)

X̃
′
= X̃

′
− C,X

′
= X

′
− C, (5)

in which climatology C is the temporal mean of the ground truth data over the entire test set
C = 1

N

∑
k X .
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G.1.2 CLIMATE PROJECTION METRICS

Normalized spatial root mean square error (NRMSEs) Normalized spatial root mean square
error (NRMSEs) measures the spatial discrepancy between the temporal mean of the prediction and
the temporal mean of the ground truth:

NRMSEs =

Õ∞(
1

N

N∑
k=1

X̃ − 1

N

N∑
k=1

X

)2
∫¡

1

N

N∑
k=1

⟨X⟩ , (6)

in which ⟨A⟩ is the global mean of A:

⟨A⟩ = 1

H ×W

H∑
i=1

W∑
j=1

L(i)Ai,j (7)

Normalized global root mean square error (NRMSEg) Normalized global root mean square
error (NRMSEg) measures the discrepancy between the global mean of the prediction and the global
mean of the ground truth:

NRMSEg =

Ã
1

N

N∑
k=1

Ä
⟨X̃⟩ − ⟨X⟩

ä2¡ 1

N

N∑
k=1

⟨X⟩ . (8)

Total normalized root mean square error (TRMSE) Total normalized root mean square error
(TRMSE) is the weighted sum of NRMSEs and NRMSEg:

TRMSE = NRMSEs + α · NRMSEg, (9)

where α is chosen to be 5 as suggested by Watson-Parris et al. (2022).

G.1.3 CLIMATE DOWNSCALING METRICS

Root mean square error (RMSE) This is the same as Equation (3).

Mean bias Mean bias measures the difference between the spatial mean of the prediction and the
spatial mean of the ground truth. A positive mean bias shows an overestimation, while a negative
mean bias shows an underestimation of the mean value.

Mean bias =
1

N ×H ×W

N∑
k=1

H∑
i=1

W∑
j=1

X̃ − 1

N ×H ×W

N∑
k=1

H∑
i=1

W∑
j=1

X (10)

Pearson coefficient Pearson coefficient measures the correlation between the prediction and the
ground truth. We first flatten the prediction and ground truth, and compute the metric as follows:

ρX̃,X =
cov(X̃,X)

σX̃σX
(11)

G.2 RESULTS SUMMARY

Table 10 and 11 summarize the global forecasting results of ClimaX and the baselines for all target
variables and at all lead times. In addition to IFS and the two CNN-based baselines in the main text,
we include FourCastNet (Pathak et al., 2022), PanguWeather (Bi et al., 2022), and GraphCast (Lam
et al., 2022) for comprehensiveness. We want to emphasize that the results obtained by these methods
are not comparable with ClimaX, as they were trained on ERA5 at 0.25◦, a much higher resolution
compared to 5.625◦ and 1.40625◦ data used to train ClimaX. In Appendix C.4, we had a discussion
on how the performance of ClimaX scales favorably with respect to data resolution. We hope this
summary will provide future works with an easier comparison with existing baselines.

In spite of being trained on much lower resolutions, ClimaX outperforms FourCastNet in forecasting
Z500, T850, and U10 at lead times from 3 days and beyond, in terms of both RMSE and ACC.
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For T2m, ClimaX achieves better results at horizons longer than 3 days. PanguWeather performs
better than ClimaX on most of the tasks, but the gap between the two methods shrinks and becomes
negligible as the lead time increases. ClimaX even outperforms PanguWeather in predicting U10 at 7
days lead times. This is because ClimaX is finetuned to perform direct prediction, which mitigates
error accumulation for long horizon prediction. GraphCast achieves the lowest RMSE among all
methods, but performs worse in terms of ACC compared to ClimaX and PanguWeather.

Table 10: RMSE on global forecasting for different target variables at different lead times. Lower is
better.

VARIABLE
LEAD TIME ClimaX FCNa PWb GCc HRES IFS ResNet UNet

[hr.] 5.625◦ 1.40625◦ 0.25◦ 0.25◦ 0.25◦ 0.1 5.625◦ 1.40625◦ 5.625◦ 5.625◦

Z500 6 62.73 49.67 37.52 15.40 16.46 24.66 26.93 26.96 47.00 53.66
[m2/s2] 24 96.19 72.76 81.31 42.23 38.77 45.90 51.01 50.96 86.60 132.65

72 244.08 201.00 251.96 133.12 125.78 146.37 152.15 152.20 305.22 458.84
120 440.40 392.00 483.44 295.63 271.65 316.79 331.45 331.38 614.20 721.83
168 599.43 566.00 680.00 504.90 466.53 535.93 549.01 548.96 806.59 819.39
336 790.26 788.43 nan nan nan nan 1011.72 1011.56 835.55 866.40
720 815.25 817.52 nan nan nan nan nan nan 858.98 880.34

T2m 6 0.95 1.11 0.72 0.59 0.50 0.35 0.97 0.97 0.76 0.77
[K] 24 1.10 1.19 0.95 0.72 0.62 0.66 1.02 1.02 0.91 1.11

72 1.43 1.47 1.38 1.05 0.94 1.06 1.30 1.30 1.70 1.91
120 1.83 1.83 1.99 1.53 1.36 1.52 1.72 1.71 2.22 2.49
168 2.18 2.17 2.54 2.06 1.88 2.06 2.24 2.23 2.66 2.66
336 2.61 2.67 nan nan nan nan 3.31 3.30 2.86 2.79
720 2.67 2.74 nan nan nan nan nan nan 2.86 2.81

T850 6 0.88 0.84 0.52 0.42 0.28 0.33 0.69 0.69 0.70 0.80
[K] 24 1.11 1.02 0.81 0.72 0.58 0.70 0.87 0.87 1.26 1.25

72 1.59 1.46 1.55 1.13 1.02 1.27 1.34 1.34 1.90 2.39
120 2.23 2.08 2.47 1.78 1.63 1.96 2.01 2.01 2.86 3.23
168 2.77 2.66 3.30 2.60 2.41 2.78 2.82 2.82 3.51 3.50
336 3.40 3.41 nan nan nan nan 4.43 4.43 3.65 3.65
720 3.47 3.49 nan nan nan nan nan nan 3.69 3.73

U10 6 1.08 1.04 0.55 0.46 0.37 0.58 0.80 0.79 0.86 1.02
[m/s] 24 1.41 1.31 0.99 0.90 0.80 1.15 1.11 1.11 1.27 1.68

72 2.18 2.02 2.24 1.60 1.47 1.98 1.92 1.92 2.78 3.17
120 2.94 2.79 3.41 2.52 2.36 2.95 2.89 2.89 3.63 3.93
168 3.43 3.35 4.18 3.46 3.25 3.87 3.81 3.81 4.15 4.08
336 3.91 3.92 nan nan nan nan 5.24 5.23 4.23 4.16
720 3.96 3.97 nan nan nan nan nan nan 4.29 4.22

a FourCastNet (Pathak et al., 2022)
b PanguWeather (Bi et al., 2022)
c GraphCast (Lam et al., 2022)
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Table 11: ACC on global forecasting for different target variables at different lead times. Higher is
better.

VARIABLE
LEAD TIME ClimaX FCNa PWb GCc HRES IFS ResNet UNet

[hr.] 5.625◦ 1.40625◦ 0.25◦ 0.25◦ 0.25◦ 0.1 5.625◦ 1.40625◦ 5.625◦ 5.625◦

Z500 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
72 0.97 0.98 0.97 0.99 0.99 0.98 0.99 0.99 0.95 0.89
120 0.90 0.92 0.89 0.96 0.94 0.92 0.95 0.95 0.79 0.69
168 0.80 0.82 0.76 0.87 0.83 0.78 0.87 0.87 0.57 0.57
336 0.59 0.59 nan nan nan nan 0.55 0.55 0.53 0.51
720 0.55 0.55 nan nan nan nan nan nan 0.49 0.49

T2m 6 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99
24 0.98 0.97 0.98 0.99 0.98 0.98 0.99 0.99 0.98 0.98
72 0.96 0.96 0.96 0.98 0.95 0.94 0.98 0.98 0.94 0.93
120 0.94 0.94 0.92 0.95 0.90 0.88 0.96 0.96 0.90 0.88
168 0.91 0.91 0.87 0.92 0.81 0.77 0.93 0.93 0.86 0.86
336 0.86 0.85 nan nan nan nan 0.85 0.85 0.83 0.84
720 0.85 0.84 nan nan nan nan nan nan 0.83 0.83

T850 6 0.98 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99
24 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.97 0.97
72 0.95 0.96 0.95 0.98 0.96 0.93 0.97 0.97 0.92 0.88
120 0.89 0.91 0.87 0.94 0.89 0.84 0.93 0.94 0.82 0.75
168 0.82 0.84 0.77 0.87 0.75 0.68 0.87 0.87 0.68 0.69
336 0.71 0.71 nan nan nan nan 0.68 0.69 0.66 0.66
720 0.69 0.68 nan nan nan nan nan nan 0.64 0.64

U10 6 0.97 0.97 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97
24 0.94 0.95 0.97 0.97 0.98 0.96 0.97 0.97 0.95 0.91
72 0.85 0.87 0.85 0.92 0.93 0.88 0.89 0.89 0.74 0.65
120 0.70 0.74 0.64 0.80 0.82 0.74 0.76 0.76 0.52 0.37
168 0.56 0.59 0.45 0.63 0.64 0.55 0.58 0.58 0.28 0.28
336 0.33 0.32 nan nan nan nan 0.21 0.21 0.19 0.22
720 0.29 0.28 nan nan nan nan nan nan 0.17 0.21

a FourCastNet (Pathak et al., 2022)
b PanguWeather (Bi et al., 2022)
c GraphCast (Lam et al., 2022)
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H QUALITATIVE EVALUATION

We qualitatively evaluate the performance of CliMax on global forecasting tasks for all target variables
and at all lead times. In each figure, the first column is the initial condition of the target variable,
which serves as the input, the second column is the ground truth of the target variable at a particular
lead time, the third column is the prediction of ClimaX, and the last column is the bias, which is the
difference between the prediction and the ground truth.

H.1 NOWCASTING
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Figure 10: Example forecasts from ClimaX at 6-hour lead time compared to ground truth ERA5.
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H.2 SHORT AND MEDIUM-RANGE WEATHER FORECASTING
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Figure 11: Example forecasts from ClimaX at 1-day lead time compared to ground truth ERA5.
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Figure 12: Example forecasts from ClimaX at 3-day lead time compared to ground truth ERA5.
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Figure 13: Example forecasts from ClimaX at 5-day lead time compared to ground truth ERA5.
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Figure 14: Example forecasts from ClimaX at 7-day lead time compared to ground truth ERA5.
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H.3 LONGER HORIZON INSTANTANEOUS FORECASTING
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Figure 15: Example forecasts from ClimaX at 2-week lead time compared to ground truth ERA5.
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Figure 16: Example forecasts from ClimaX at 1-month lead time compared to ground truth ERA5.

H.4 CLIMATE MODEL DOWNSCALING
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Figure 17: Example visualizations of downscaled prediction of key variables by ClimaX.
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