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Abstract

Today’s fire projection modeling tools struggle to keep up with the rapid
rate and increasing severity of climate change, leaving disaster managers
dependent on tools which are increasingly unrepresentative of complex
interactions among fire behavior, environmental conditions, and various
mitigation options. This has consequences for equitably minimizing wildfire
risks to life, property, ecology, cultural heritage, and public health. Fortu-
nately, decades of data exist for fuel populations, weather conditions, and
outcomes of significant fires in the American West and globally. To benefit
from this data, the fire management community needs data standardization
and validation among many competing fire models. Likewise, the machine
learning community needs curated datasets and benchmarks to develop solu-
tions necessary to generate impact in this space. We present a novel dataset
composed of 308 medium sized fires from the years 2018-2021, complete with
both time series airborne based inference and ground operational estimation
of fire extent, and operational mitigation data such as control line construc-
tion. As the first large wildfire dataset with mitigation information, Burn
Mitigation Dataset (BurnMD) will help advance fire projection modeling,
fire risk modeling, and Artificial Intelligence-generated land management
policies.

1 Introduction

Wildfires are naturally occurring phenomena that are an integral part of healthy ecological
systems. However, uncontrolled fires, especially those near the Wildland/Urban Interface
(WUI), can pose a considerable threat to life and property and therefore must be mitigated or
fully suppressed. Furthermore, there is growing concern among the scientific and firefighting
communities that the effects of climate change will lead to increased intensity and severity of
wildfires [1]. Due to the seriousness and complexity of the problem, updated modeling and
mitigation techniques are necessary to combat it. Artificial Intelligence (AI) and Machine
Learning (ML) are potential techniques that can be applied to the topics of wildland fire
modeling, forecasting, and optimized mitigation planning; however, these methods require
large datasets representative of historical events. These datasets currently do not exist in
this domain and data sources (including aerial sensor data, weather patterns, and effects
of previous wildfires) are spread across multiple agencies with incompatible formats and
often non-overlapping or misaligned spatiotemporal fire spread and mitigation tracking. Fire
projection, or forecasting models, are essential tools in firefighting training, fire planning, risk
modeling, and real-time incident response. Wildfire behavior and spreading has long been
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modeled by the Rothermel surface fire spread model [2]. Newer models include CAWFE [3],
ELMFIRE [4], and WRF-SFIRE [5]. These were developed by studying small, well-contained
wildfires or physics-based simulations and were not explicitly validated against historical
data. As climate change drives hotter and drier fire seasons, historical fire projection model
strategies must be updated to account for emergent and novel fire behaviours. Additionally,
fire disaster response is often a multi-jurisdictional and resource constrained problem which
necessitates proper logistical distribution of firefighting and emergency assets that are robust
to equipment failures and the realities of command. The lack of standardization among the
agencies that collect wildfire data limits innovation. This work will serve as a standardized
dataset that can be used in downstream efforts for modeling and predicting wildfire spread
and mitigation techniques, enabling the greater wildfire community to validate and verify
future modeling techniques in this domain.

1.1 Related Work

Local and foreign governments have jointly invested in improved modeling techniques for
predicting the occurrence and impact of disastrous events like tsunamis, hurricanes, and
floods [6, 7, 8]. Modeling these events, which include machine learning algorithms [9, 10,
11], relies on access to standardized and verified data. Wildfire models, comparatively, are
not updated, standardized, or verified across historical databases [12, 13]. Researchers have
curated datasets for wildfire and fire events in the past [14, 15, 16], but little attention has
been paid to the role human intervention plays in the progression of a wildfire. Without this,
wildfire models do not represent the behaviour seen by fire managers, leaving the general
population at a larger risk for loss of life, property, and ecology. This work contributes the
first wildland fire dataset that includes community mitigation efforts.

2 Data Sources

Wildfire reporting is fragmented across eight government agencies in the National Interagency
Fire Center (NIFC), which adds complexity to the collection and dissemination of data.
NIFC data is publicly available through their Open Data Site [17]. The datasets used in this
work include: Final Fire Perimeters, Operational Mitigations, and Operational Base Camps
and Water/Retardant Drop Sites. More information is in Appendix 6.1.1 and 6.1.2.

To verify dates and add missing flight times in NIFC data, this work leverages Moderate
Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer
Suite (VIIRS), which are space-based remote sensing data sources. MODIS is onboard
NASA’s Terra and Aqua satellites, which covers Earth’s surface every 1-2 days. MODIS
provides active fire data at 1km resolution [18, 19] and burned area at 500m resolution [20].
A successor to MODIS, the VIIRS instruments are onboard two NASA/NOAA joint polar
satellite systems and provide active fire data at a resolution of 375m. These products are
downloadable courtesy of NASA [21].

3 Methodology

The following sections describe improvements and corrections to wildfire databases. The
outcome is a dataset with corrected information and new data applicable to AI and modeling
and is accessible for download at fireline.mitre.org/burnmd.

3.1 BurnMD Dataset

The proposed BurnMD dataset format is based on the NIFC database format of GeoPandas
DataFrames, descibed in Table 1 and further detailed in Appendix 6.1. Table 2 shows the
additions made to create the BurnMD dataset. Modifications are detailed in Section 3.2.
The goals of the additions and modifications are twofold: to correct and standardize the
inconsistencies that have occurred through the multi-agency reporting system, and to make
spatio-temporal AI-enabled research and modeling possible. The Operational Mitigations
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for POINTS data detailed in Table 1 underwent schema and entry sanitizing. It is near-
impossible to verify dip and drop sites for wildland fire mitigation, thus the data is used as-is
in the BurnMD dataset. Additionally, some incorrectly labeled entries could not be deduced
from their datetime and coordinates and therefore are currently excluded from BurnMD.

Table 1: NIFC Databases
GeoPandas Dataframe Type
Operational Perimeters (Completed) POLYGONS
Operational Mitigations (Dozer Lines, Hand Lines) LINES
Operational Mitigations (Water Drops, Fire Retardant Drops) POINTS

Table 2: BurnMD: Example Dataset Entry Additions
Operational Perimeters: POLYGONS
Fire Start Location geometry(lat,

long)
Approximate start location of a wildfire

Fire Start Date string(Datatime) Start datetime of the wildfire
Fire Containment Date string(Datatime) Containment datetime of the wildfire
Operational Mitigations: LINES
Mitigation Start Date string(Datatime) Calculated datetime of the start of a mitiga-

tion effort
Feature Category string(Feature) Dataset only includes "Completed" mitiga-

tion features
Feature Timestamps List(Datetime) List of calculated timestamps to the corre-

sponding latitude, longitude coordinate in a
mitigation line

3.2 NIFC Database Inconsistencies

This section discusses solutions to missing, duplicate, and inconsistent entries in the NIFC
databases. First, the timestamp entries in the Point, Lines, and Polygon databases were
verified to be within bounds of the beginning and containment of the wildfire. Where
wildfire perimeter datetimes are not specified or not entered in the Polygon database, we
further verify through MODIS and VIIRS imaging described in Section 3.3, if no data can
be recovered for a perimeter, it is removed from the BurnMD database.

Second, the Polygon database was analyzed for duplicate entries by referencing total burned
area (in square-kilometers), timestamp entries, and perimeter coordinates. Entries with
overlapping geometry, timestamps, and area were noted as duplicates. This duplication
can be the result of different types of sensor measurements through reporting agencies. For
example, as multiple agencies work on the same wildfire, one agency may report a fire
perimeter from IR-based imaging while another agency may report the same perimeter from
‘mixed methods’ or GPS flights. As it is impossible to verify which agency, if any, are the
true ground truth, we keep this data, but note it as a near-duplicate for a different collection
method entry in the dataset. It is up to the discretion of the user to filter on these collection
methods for their own use-cases.

Third, in many cases, perimeter entries were inputted with incorrect datetimes. The reported
datetimes often referenced the time when an “infrared interpreter” added a polygon into
the database, rather than the time the data was collected. Similarly to missing datetimes
entered in the database, these entries can also be verified through MODIS and VIIRS sensor
imaging.

3.2.1 Database Additions

This section discusses solutions to the original NIFC databases that enable the use of historical
wildfires for validation and verification of current and future fire projection modeling, fire
risk modeling, and AI-generated land management policies. To accomplish this, multiple
additions to these databases needed to be made to resolve the fragmented data spread across



multiple agencies. As described in Table 2, the wildfire perimeter database was further
expanded through the addition of wildfire start location, start datetime, and containment
datetime. This data was collected through cross-referencing data with documentation from
reporting agencies and final wildfire statistics. A wildfire’s containment is when it has been
100% contained and no agency is actively fighting it. These datetimes are critical for both
verification and in downstream modeling of weather and fuel at the start of a wildfire.

Further described in Table 2, the Operational Mitigations database can be significantly
improved by adding datetimes for individual mitigation lines. As such, BurnMD database
includes datetimes for individual latitude and longitude coordinates along a mitigation line
that was “Completed”, i.e, hand lines and dozer lines. This information is necessary for AI
and other modeling and simulation tools, where fire spread and trajectory can be impacted
by mitigation efforts at specific times.

To recover datetimes of a line, this work uses the final timestamp of a mitigation line, the
rate of production for mitigations lines descibed in [22], and the relative fuel and topography
provided by[23] of a given coordinate along a line to calculate each corresponding coordinate’s
timestamp.

To perform this calculation, we first leveraged documentation provided by the National
Wildfire Coordinating Group (NWCG) [22] to determine hand crews and bulldozer production
rates of completed production lines. The BurnMD dataset assumes a 20-person hand crew
places hand lines and the most-common type of Dozer, a D6C, places the dozer lines. We
also assume the standard rate of chains per hour in which a production, or mitigation, line is
implemented is chains per 3-feet per hour for hand lines and chains per 30-feet per hour for
dozer lines. Documentation is not provided for the width of a chain, which is approximately
66-feet in length.

Production rates change with respect to the relative fuel and topography of the latitude
and longitude coordinate and the directness of an approaching wildfire edge. So, next we
collected fuel and topography data from LandFire at 30 meter resolution [23]. We use the
13-Anderson Fuel Models to calculate the rate of production, and currently assume a Type I
Indirect approach as described in [22].

Last, we identify the hand line approach since it impacts the duration and subsequent
datetime between any set of latitude and longitude coordinates. We assume the hand crew
is spaced closely together and works across the line to avoid holes in the line which could
allow for fingering of the fire.

The following equation estimates this calculation. Given a completed production line
timestamp, tP, and each point, P(latitude, longitude) along a line, we can calculate each
timestamp, tp(i), using the rate of production, R(fuel, topography, incident type):

tp(i) = tp(i+1) − (∆P ∗R)

where ∆P is the calculated length between the previous point, p(i + 1), and the current
point, pi.

3.3 Verification

MODIS and VIIRS are leveraged for verification of the NIFC daily fire perimeter data. As
noted in Section 3.2, daily fire perimeter entries into the database may have missing or
incorrect datetimes, while still maintaining the polygon, or perimeter data. To overcome
these inconsistent values, we can use this IR data to approximate datetimes, and further
verify the extent of a wildfire.

4 Results

BurnMD is hosted at fireline.mitre.org/burnmd. As an example of BurnMD data, Figure
1 shows the Mineral Fire from California’s 2020 fire season, which burned approximately
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Figure 1: Sample case from the BurnMD dataset of the 2020 Mineral Fire in California over
multiple days showing fire propagation extent and mitigation actions over time. Lines are
dilated for visibility.

29,667 acres in 13 days. This example shows mitigation lines and fire perimeters as a function
of time, which is critical for modeling and simulation of the event. This information is
available for a total of 308 medium sized fires from the years 2018-2021 that occurred in
the western United States. We define a medium-sized fire as a fire with a final perimeter
between 6,400-64,000 acres (10-100 square miles). Tables 6 and 7 in Appendix 6.2 show the
number of fires per state per year, and an example of metadata for the California 2020 fires
included in BurnMD, respectively.

5 Discussion

This paper describes a database that includes time series of wildfire perimeters and mitigations
for 308 medium-sized fires in the western United States from the years 2018-2021. Data was
primarily obtained from NIFC and was corrected and modified for internal consistency and
ease of use. These additions and modifications allow consistent time resolution, which is
essential for the use of time-series based ML algorithms in fire mitigation.

Future database features will include land cover layers, road and other structure layers,
as well as weather information for each fire. The database can also expand to small fires.
This work focused on medium to large fires, since these fires have escaped containment and
thus are a priority for fire managers. To improve accuracy and reliability, the database
can leverage data from positioning and tracking devices recorded at the time of a wildfire’s
occurrence. This is currently infeasible since some agencies lack these devices or the data is
proprietary.

BurnMD’s historical wildfire and mitigation data will accelerate the AI community in
developing algorithms that simulate wildland fire behavior, improve fire management strategy
and planning, extract insights from effective land management strategies, and validate and
verify existing wildland fire models.
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6 Appendix

6.1 Wildfire Database Sources

6.1.1 NIFC: Final Fire Perimeters

The NIFC provides final fire perimeters for all known historical fires in the “Interagency Fire
Perimeter History” database. These perimeters have been derived from a variety of methods
ranging from carbon dating for very old fires, to hand-walked GPS and aerial reconnaissance
for more modern fires. The database includes the fire year (defined as the year in which
the fire started), incident name, calculated perimeter size, information about the agency
reporting the perimeter, and other relevant data. The Interagency Fire Perimeter History[24]
database can be downloaded as a CSV file, KML file, GIS shapefile, or a GeoJSON file. For
more details on the contents of the database, please refer to the NIFC database schema [25].

6.1.2 NIFC: Operational Database

NIFC also provides operational datasets which are yearly collections available from 2018-
2021 that include Point, Lines, and Polygon databases that describe all of the firefighting
operations from participating agencies. Point data described in Table 3 includes base camp
locations and water dipping sites. Line data described in Table 4 includes mitigation lines
created by dozers or hand crews, roads that were used as firelines, the uncontrolled fire edge,
and any planned hand or dozer lines that have not been started or are incomplete. This
database does not include the size of the hand crew nor the type/class and number of dozers
used to implement mitigation lines, however this data does exist spread across other reports.
Future iterations of our work will attempt to include this data.

Table 3: NIFC Operational Database: Points
Incident Name string Name of the wildland fire incident
Complex ID Number The IRWIN ID of the incident’s parent Complex Record
Incident ID Number Unique identifier assigned to each incident record in IRWIN
Feature Category string Database entry type i.e Dip Site
Label string Describes the feature, i.e Staging Dip
Map Method string Defines how the source polygon was derived
Point Date string(Datetime) Timestamp of source point feature creation
Date Current string(Datetime) Timestamp of source point feature database entry
Point Date string(Datetime) Timestamp of source point feature collection
geometry GeoSeries POINT latitude, longitude of the feature or action

Contents of the NIFC Operational Database for Point data containing operational mitigations [25].

Polygon data shown in Table 5 consist of the fire perimeters after an indiscriminate amount
of time. This differs from the other datasets, since the agencies typically update this data
well after the fire was contained. The final recorded perimeter in this data is occasionally the
same as the one found in Section 6.1.1 data. Thus, we compared fire perimeters to active
fire locations from space-based observations for several cases.
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Table 4: NIFC Operational Database: Lines
Incident Name string Name of the wildland fire incident
Complex ID Number The IRWIN ID of the incident’s parent Complex Record
Incident ID Number Unique identifier assigned to each incident record in IRWIN
Feature Category string Database entry type i.e Uncontrolled Fire Edge
Map Method string Defines how the source polygon was derived
Create Date string(Datetime) Timestamp for the source feature creation
Date Current string(Datetime) Timestamp of feature database entry
Line Date string(Datetime) Timestamp of source feature collection
Length Feet Number Calculated length (feet) of line geometry
geometry GeoSeries LINE latitude, longitude points that define the line

Contents of the NIFC Operational Database for Line data containing operational mitigations [25].

Table 5: NIFC Operational Database: Polygons
Incident Name string Name of the wildland fire incident
Complex ID Number The IRWIN ID of the incident’s parent Complex Record
Incident ID Number Unique identifier assigned to each incident record in IRWIN
Feature Category string Database entry type i.e Wildfire Daily Fire Perimeter
Map Method string Defines how the source polygon was derived
GIS Acres Number Automated calculation of the source polygon acreage
Create Date string(Datetime) Timestamp for the source polygon feature creation
Date Current string(Datetime) Timestamp of a particular database entry
Polygon Date string(Datetime) Timestamp of source polygon feature collection
Shape Area Number Calculated area (meters) of polygon geometry
geometry GeoSeries POLYGON latitude, longitude points that define the polygon shape

Contents of the NIFC Operational Database for Wildland Fire Perimeters [25].

6.2 Wildfire Metadata Examples

Table 6 provides an overview of the number of fires in each western State for the years
2018-2021 that have a final perimeter between 6,400 and 64,000 acres (10-100 sq. miles).
Table 7 is an example of available metadata for the fires in California in the year 2020.

Table 6: BurnMD wildfires with final perimeters between 6,400-64,000 Acres
State 2018 2019 2020 2021 Total
Arizona 4 9 17 9 39
California 13 10 25 8 56
Colorado 9 1 4 2 16
Idaho 17 6 4 10 37
Montana 5 1 4 15 25
Nevada 7 5 11 2 25
New Mexico 3 3 4 1 11
Oregon 12 3 6 12 33
Utah 5 3 5 4 17
Washington 6 5 9 14 34
Wyoming 8 2 4 1 15
Total 87 48 93 78 308



Table 7: BurnMD 2020 California wildfires with final perimeters between 6,400-64,000 acres
Incident Name Incident ID Start Date/Time Days Active* Start Location Acres

(UTC) (Lat, Lon)
Apple CA-RRU-096640 08/01/20 01:08 13 33.991, -116.962 33,235
Blue Ridge CA-ORC-0121612 10/26/20 21:32 7 33.877,-117.675 13,695
Blue Jay CA-YNP-000054 07/25/20 01:00 118 37.812,-119.646 6,922
Bond CA-ORC-136890 12/03/20 01:14 9 33.744,-117.675 6,680
Carmel CA-BEU-004081 08/18/20 21:24 11 36.444,-121.682 6,995
Devil CA-KNF-007084 09/09/20 unk 67 41.766, -123.375 8,870
Dome CA-MNP-012356 08/15/20 22:22 7 35.301, -115.598 44,219
El Dorado CA-BDF-013409 09/05/20 12:51 71 34.080, -116.986 22,745
Gold CA-LMU-003917 07/20/20 14:12 23 41.110, -120.923 22,650
Hog CA-LMU-003874 07/18/20 17:28 30 40.420, -120.863 9,565
Lake CA-ANF-003289 8/12/2020 22:38 19 34.671, -118.518 31,000
Loyalton CA-TNF-001600 08/12/20 17:13 46 34.679, -118.452 46,765
Mineral CA-FKU-010219 07/13/20 16:40 13 36.095, -120.522 29,665
Mountain View CA-OVD-030860 11/17/20 19:15 13 38.515, -119.465 20,380
Nadeau CA-CDD-011339 07/30/20 unk 6 36.020, -117.476 9,150
North NV-CCD-030547 08/02/20 unk 7 39.849, -119.991 6,882
Rattlesnake CA-KNP-000080 08/16/20 17:35 15 37.736, -119.783 8,420
River CA-BEU-004024 08/16/20 10:04 19 39.088, -121.014 50,215
Sheep CA-PNF-001299 08/22/20 22:02 17 40.274, -120.757 29,540
Silverado CA-ORC-0121364 10/26/20 07:54 11 33.736, -117.657 12,470
Slink NV-HTF-030684 08/30/20 01:00 16 38.568, -119.568 26,765
Stagecoach CA-CND-002309 08/03/20 17:33 15 35.430, -118.533 7,750
Valley CA-CNF-002833 09/05/20 16:02 18 32.765, -116.692 16,390
Walbridge** CA-LNU-013407 08/17/20 06:40 46 38.481, -122.148 55,210
Zogg CA-SHU-009978 09/27/20 16:03 16 40.539, -122.566 56,340

*Days with records in NIFC Final Reports, otherwise determined through MODIS/VIIRS
verification; **Part of the LNU Lightning Complex; unk = unknown
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