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ABSTRACT

Price-based demand response (DR) enables households to provide the flexibility
required in power grids with a high share of volatile renewable energy sources.
Multi-agent reinforcement learning (MARL) offers a powerful, decentralized
decision-making tool for autonomous agents participating in DR programs. Un-
fortunately, MARL algorithms do not naturally allow one to incorporate safety
guarantees, preventing their real-world deployment. To meet safety constraints,
we propose a safety layer that minimally adjusts each agent’s decisions. We in-
vestigate the influence of using a reward function that reflects these safety adjust-
ments. Results show that considering safety aspects in the reward during training
improves both convergence speed and performance of the MARL agents in the
investigated numerical experiments.

1 INTRODUCTION

The electrification of the heating and mobility sector entails both challenges and opportunities for
power grid operation. Controllable electric loads can provide a source of flexibility for meeting the
volatility in renewable generation, but coordination is required to take full advantage of this flexi-
bility and avoid undesired demand peaks. Mechanisms to adjust the power consumption patterns of
end customers for improving the reliability of power grid operation and decreasing operational costs
are summarized under the term demand response (DR). For private households, DR mechanisms
are usually price-based, meaning that electricity pricing schemes are used to incentivize a desired
consumption behavior of customers acting as autonomous agents (Siano, 2014).

Early research in this field focused on the day-ahead consumption scheduling of autonomous agents
under dynamic pricing schemes (Mohsenian-Rad et al., 2010; Li et al., 2011), neglecting uncer-
tainties in both consumer behavior and generation forecasting. For training autonomous agents in
real-time DR settings, multi-agent reinforcement learning (MARL) offers a model-free and adap-
tive framework with the capability of handling large amounts of data as well as complex nonlinear
problems (Vázquez-Canteli & Nagy, 2019). MARL has been applied successfully for reducing peak
loads (Vázquez-Canteli et al., 2020; Ebell & Pruckner, 2021; Bahrami et al., 2021) as well as op-
erational costs (Christensen et al., 2020; Shojaeighadikolaei et al., 2021). Despite these promising
results, practical deployment of MARL for DR is hindered by its inability to incorporate physical
constraints such as storage capacities. Existing work addresses this problem using reward shaping
(Kofinas et al., 2018), over-dimensioning components (Vázquez-Canteli et al., 2020), or employing
backup controllers on the component level (Vázquez-Canteli et al., 2020; Bahrami et al., 2021).
Of these options, only backup controllers can guarantee constraint satisfaction. However, previous
work fails to investigate the influence of overriding decisions of the MARL algorithm.

We address this research gap by incorporating a constraint violation penalty into the reward used
during MARL training. Our proposed safety layer ensures minimal interference by using a shrinking
horizon model-predictive control formulation (Ye & Kolmanovsky, 2022) to project each agent’s
decision onto the feasible set defined by agent-specific constraints. The penalty is proportional to
the necessary adjustment. We compare training with and without the penalty added to the reward and
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use a perfect-knowledge day-ahead scheduling approach (Li et al., 2011) as a theoretical maximum
to evaluate overall performance of the real-time MARL approach.

2 PROBLEM FORMULATION

We consider a group of N households served by a single energy provider. Each household partici-
pates in the DR program to optimize its own payoff. The goal of the energy provider is to minimize
the operational cost as well as the aggregated discomfort. Since it cannot directly manage the house-
holds’ power consumption, it issues dynamic prices to incentivize the households to adopt a socially
optimal behavior. Next, we describe the case study and the perfect-knowledge solution approach
from Li et al. (2011), which we use as a theoretical maximum for algorithm performance. Then,
we formulate the real-time interactions as a partially observable Markov Game (POMG) to solve it
using MARL.

2.1 CASE STUDY

Each household i ∈ {1, ..., N} has a non-shiftable base load ℓi,t corresponding to household appli-
ances (such as dishwashers), a battery, and a shiftable load corresponding to a heating, ventilation,
and cooling system (HVAC). We consider a discrete-time setting with time interval ∆t and time
horizon T . At each time step t, households can shape their power consumption by adjusting the bat-
tery charge/discharge power pBi,t and the power consumed by the HVAC, denoted pAC

i,t . The overall
demand di,t of a household is obtained using the power balance equation

di,t = ℓi,t + pAC
i,t + pBi,t. (1)

The energy stored in the battery, denoted xB
i,t, and the indoor temperature xAC

i,t evolve according to
the discrete-time dynamics adapted from Li et al. (2011, Eq. 1, Eq. 13):

xB
i,t+1 = xB

i,t + pBi,t∆t, (2)

xAC
i,t+1 = xAC

i,t + (αi(T
A
i,t − xAC

i,t ) + βip
AC
i,t )∆t. (3)

Here, αi is a positive constant specifying the building insulation and TA
i,t is the outdoor temperature.

Since we only consider the heating scenario, βi is also a positive constant capturing the thermal
characteristics of the HVAC.

We refer to the discomfort Ui,t of a household as the sum of the deviation from the desired room
temperature TD

i and a term accounting for the cost of battery usage, such that

Ui,t = θi(x
AC
i,t − TD

i )2 + σi(p
B
i,t∆t)2. (4)

Herein, the sensitivity for temperature deviation is captured by θi ∈ (0, 1], while σi models the
equipment cost and expected degradation of the battery. The electricity cost Pi,t of a household
depends on the electricity price ϕt set by the energy provider:

Pi,t = ϕtdi,t∆t. (5)

The goal of the customer is to optimize its payoff over a certain time horizon, e.g., one day, by
adjusting its power consumption pi,t =

[
pBi,t pAC

i,t

]T
in each time step t ∈ {1, ..., T}. We denote

the sequence of power set points over the horizon as pi,(·). Both the power set points and the state
variables xB

i,t and xAC
i,t are constrained by lower and upper limits, which we refer to as z ∈ [z, z]

for some quantity z. Furthermore, we set the lower limit of the total demand of a household to 0 to
prevent exporting battery power to the grid. Finally, we impose a minimum terminal charge for the
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battery. The day-ahead scheduling for one household thus results in solving

min
pi,(·)

∑
t

Ui,t +
∑
t

Pi,t (6a)

s.t. ∀t : pBi,t ∈ [pB
i
, pBi ], (6b)

pAC
i,t ∈ [0, pAC

i ], (6c)

xB
i,t ∈ [xB

i , x
B
i ], (6d)

xAC
i,t ∈ [xAC

i , xAC
i ], (6e)

di,t ∈ [0, di], (6f)

ϵix
B
i ≤ xB

i,T , ϵi ∈ (0, 1]. (6g)

Note that the optimal solution of (6a) depends on the sequence of prices ϕ(·) set by the energy
provider. Next, we detail how to use dynamic pricing to incentivize socially optimal behavior of the
households.

2.2 DYNAMIC PRICING MECHANISM AND OPTIMAL SOLUTION

The social cost of a community of households trades off the discomfort of each individual household
with the operational cost of satisfying the aggregated demand dt :=

∑
i di,t. For simplicity, we

assume a quadratic operational cost function C(dt) (Forouzandehmehr et al., 2015). Computing the
optimal power consumption of all households p =

[
p1,(·) ... pN,(·)

]T
by solving

min
p

∑
i

∑
t

Ui,t +
∑
t

C(dt) (7)

s.t. ∀i,∀t : (6b) − (6g)

is in theory possible, since both the objective function and the feasible set are convex (Li et al.,
2011). However, it would require knowledge of all utilities and constraints. As an alternative, the
work in Li et al. (2011) proposes adopting a pricing scheme using

ϕt = ∂C(dt)/∂dt. (8)

The authors prove that using an iterative algorithm, an equilibrium between the prices and the power
consumption schedules can be reached, which optimizes both the social cost (7) and the aggregation
of individual household costs (6a). For more details on the iterative algorithm used to solve this
benchmark problem, the reader is referred to (Li et al., 2011).

Computing the equilibrium is well suited for day-ahead scheduling, but would be computationally
prohibitive when used in a real-time setting. Furthermore, the approach in (Li et al., 2011) assumes
perfect knowledge of the values for ℓi,t and TA

i,t. To provide a more realistic solution using MARL,
we subsequently formulate the interaction between the households and the energy provider as a
POMG.

3 SAFE MARL FOR DEMAND RESPONSE

A POMG models the interaction between a set of agents i ∈ N and an environment as a sequen-
tial decision-making process and thereby provides a theoretical framework for MARL. It consists
of a tuple (N ,S, {Ai,Oi, Ri}∀i), where the notation {}∀i refers to the collection of individual
quantities (Gronauer & Diepold, 2022). At each time step t, each agent (corresponding to one
household) receives an observation oi,t =

[
xB
i,t xAC

i,t TA
i,t TD

i ℓi,t di,t ϕt h
]T ∈ Oi,

where h refers to the hour of the day. Based on these individual observations, the agents select an
action ai,t =

[
pBi,t pAC

i,t

]T ∈ Ai. This action is applied to the environment, whose global state

st =
[{
xB
i,t xAC

i,t TA
i,t TD

i ℓi,t di,t
}
∀i ϕt h

]T ∈ S transitions to the next state. The
transitions of the state variables xB

i,t and xAC
i,t are determined by (2) and (3). The total load di,t and

the price ϕt are computed by (1) and (8). The environment issues agent-specific rewards

Ri,t = −(Ui,t + Pi,t). (9)
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The negation is used because the goal of each agent is to maximize its expected cumulative reward,
not minimize its cost. We reset the environment at the end of a day (t = T ), such that the goal of
each RL agent is aligned with the objective in (6a).

RL algorithms do not naturally allow one to incorporate constraints such as (6b) - (6g). Therefore,
we use a safety layer based on a shrinking horizon MPC formulation (SHMPC) (Ye & Kolmanovsky,
2022). As opposed to receding horizon MPC, where a control problem is solved repeatedly over a
moving time horizon with a fixed length, the SHMPC solves the problem over a shrinking horizon
between the current time step t and the fixed final time step T . Hence, the number of optimization
variables is reduced with each time step, which benefits computation time. However, our safety
layer can easily be reformulated for a receding horizon MPC.

Since the constraints in (6b) - (6g) are not coupled between the agents, we can formulate an in-
dividual safety layer for every agent. At each time step t , this safety layer solves a constrained
optimization problem to adjust the action ai,t proposed by the RL agent while ensuring that the con-
straints are satisfied for all remaining time steps τ ∈ {t, ..., T}. To remove the perfect-knowledge
assumption in Li et al. (2011), we use predictions T̂A

i,τ |t and ℓ̂AC
i,τ |t at some point τ in the future based

on the knowledge at time point t. Consequently, we have to adjust (1) and (3) such that

xAC
i,τ+1|t = xAC

i,τ |t + (αi(T̂
A
i,τ |t − xAC

i,τ |t) + βip
AC
i,τ )∆t (10)

di,τ |t = ℓ̂i,τ |t + pAC
i,τ + pBi,τ . (11)

We expect predictions for some quantity z as ẑτ |t = zτ+ξτ |t, where zτ corresponds to the true value.
The noise ξτ |t is uniformly sampled from an interval Ξτ |t = [ξ

τ |t, ξτ |t], the size of which linearly
increases over the horizon (Pinson & Kariniotakis, 2004). This implies that, given a prediction, the
true value of the quantity will lie within zτ ∈ [ẑτ |t − ξτ |t, ẑτ |t − ξ

τ |t]. Using these worst-case
bounds, the resulting optimization problem solved by the safety layer is

min
ãi,(·)

∥ai,t − ãi,t∥2 (12a)

s.t. ∀τ : pBi,τ ∈ [pB
i
, pBi ], (12b)

pAC
i,τ ∈ [0, pAC

i ], (12c)

xB
i,τ ∈ [xB

i , x
B
i ], (12d)

xAC
i,τ |t ∈ [xAC

i + αi∆tξτ |t, x
AC
i + αi∆tξ

τ |t] (12e)

di,τ |t ∈ [ξτ |t, di + ξ
τ |t] (12f)

ϵix
B
i ≤ xB

i,T , ϵi ∈ (0, 1]. (12g)
The constraints formulated in (12b) - (12d) and (12g) are the same as in (6b) - (6d) and (6g), re-
spectively. (12e) and (12f) specify the worst-case bounds for the temperature and the total load,
which are computed using the predicted quantities as in (10) and (11). The objective function (12a)
minimizes the distance between the safe action ãi,t and the action suggested by the RL agent. Note
that even though we optimize over the actions for all remaining time steps, ãi,(·), we are only inter-
ested in obtaining the safe action for the current time step, ãi,t. This action is then passed on to the
environment.

If an action correction is necessary, we compute a penalty W̃i,t = c∥ai,t − ãi,t∥2, where c is a
positive constant. To incentivize the agent to minimize the constraint violation, we add this penalty
to the reward, such that

R̃i,t = −(Ũi,t + P̃i,t + W̃i,t), (13)

where Ũi,t and P̃i,t correspond to the discomfort and electricity cost for the safe action.

To solve the POMG, we employ Multi-agent Proximal Policy Optimization (MAPPO) (Yu et al.,
2022), an actor-critic MARL algorithm. The actor-critic architecture is particularly suitable for ad-
dressing the non-stationarity (Gronauer & Diepold, 2022) introduced through the dynamic pricing:
Since the critic is only used during training, it allows one to make additional information available
during training (e.g., the global state), which is then removed during execution time. This training
paradigm is referred to as centralized training, decentralized execution (CTDE). For further infor-
mation, the reader is referred to Gronauer & Diepold (2022).
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Figure 1: Evolution of aggregated household cost (left) and social cost (right) during training.

4 EXPERIMENTS AND DISCUSSION

We train five agents with individual system parameters given in Appendix A.1 to schedule the power
consumption on a given day in January. We compare the CTDE paradigm to independent learning
(IPPO), where no global state information is used during training. To investigate the influence of
the constraint violation penalty, we compare the training and testing performance when using the
reward functions Ri,t and R̃i,t, respectively. We denote training runs with reward R̃i,t as MAPPO-S
and IPPO-S. For MAPPO, IPPO, MAPPO-S, and IPPO-S, six training runs with different random
seeds are conducted. The hyperparameters we use are specified in Appendix A.3.

The training curves shown in Fig. 1 indicate that using R̃i,t during training improves both per-
formance and convergence speed. During deployment, the MAPPO-S and IPPO-S agents not only
achieve lower costs, but also require significantly fewer interference of the safety layer than their
counterparts trained with Ri,t, as can be seen in Tab. 1. This is a crucial result, since existing ap-
proaches use MARL for DR without any consideration of safety aspects in the reward. Furthermore,
Tab. 1 shows that the MAPPO-S agents achieve a substantially lower peak consumption, which
could be attributed to the global state information used during training.

5 CONCLUSION AND FUTURE WORK

We present a safe MARL algorithm for price-based DR, facilitating the deployment in real-world
settings. The proposed safety layer ensures constraint satisfaction by projecting each agent’s action
into the agent-specific feasible set. We show that training the agents with the reward that accounts
for the constraint violation speeds up convergence and yields better overall results with respect to
both aggregated individual and social costs. Using this reward, the MAPPO-S algorithm approaches
the optimal day-ahead solution. Future work should integrate forecasts of observations and prices to
further improve the MARL performance. Futhermore, we will focus on handling constraints at com-
munity level, e.g., limiting the aggregated demand of all households to the maximum transformer
power.

Table 1: Benchmarking deployment of best models obtained with different MARL training schemes.

Optimum IPPO-S IPPO MAPPO-S MAPPO

Community cost 6,564.45 6,703.72 6,797.82 6,642.63 6,799.45

Total household cost 12,966.36 13,109.11 13,348.47 13,088.02 13,453.85

Peak load 18.36 22.5 26.43 20.89 29.12

Action corrections - 98 408 48 446
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A PARAMETER VALUES

A.1 SYSTEM PARAMETERS

Table 2: System parameters for five households.

Household 1 Household 2 Household 3 Household 4 Household 5

αi 0.9 0.9 0.9 0.9 0.9

βi 7.61 6.09 6.47 7.5 6.9

ϵi 0.5 0.5 0.5 0.5 0.5

σi 10.0 10.0 10.0 10.0 10.0

θi 1.0 1.0 1.0 1.0 1.0

TD
i [°C] 24 24 23 22 23

pBi [kW] 1.8 1.8 1.8 1.8 1.8

pAC
i [kW] 4 4 4 4 4

xB
i [kWh] 0.325 0.325 0.325 0.325 0.325

xB
i [kWh] 6.175 6.175 6.175 6.175 6.175

xAC
i [°C] 20 20 20 20 20

xAC
i [°C] 26 26 26 26 26

di [kW] 10 10 10 10 10

c 1 1 1 1 1

A.2 PREDICTIONS AND WORST-CASE BOUNDS

We generate the predictions T̂A
i,τ |t and ℓ̂i,τ |t by adding smoothed uniform noise to the true values.

The base amplitude of the uniform noise is 0.05 and increases linearly with a factor of 1.08 over the
horizon. To smooth the noise, we apply two iterations of a moving-average filter with window size
19.

A.3 HYPERPARAMETERS

We employ the standard hyperparameters 1 except for the values listed in Tab. 3.

Table 3: Hyperparameters for MAPPO and IPPO.

Parameter Explanation Value

clip param Clipping threshold for policy updates 0.1

critic lr Learning rate for critic network 0.0003

lr Learning rate for policy network 0.0003

ppo epoch Number of gradient step updates per rollout 5

1provided in https://github.com/marlbenchmark/on-policy

7


	Introduction
	Problem formulation
	Case study
	Dynamic pricing mechanism and optimal solution

	Safe MARL for Demand Response
	Experiments and discussion
	Conclusion and future work
	Parameter values
	System parameters
	Predictions and worst-case bounds
	Hyperparameters


