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ABSTRACT

Estimating the embodied carbon in products is a key step towards understand-
ing their impact, and undertaking mitigation actions. Precise carbon attribution is
challenging at scale, requiring both domain expertise and granular supply chain
data. As a first-order approximation, standard reports use Economic Input-Output
based Life Cycle Assessment (EIO-LCA) which estimates carbon emissions per
dollar at an industry sector level using transactions between different parts of the
economy. For EIO-LCA, an expert needs to map each product to one of upwards
of 1000 potential industry sectors. We present CaML, an algorithm to automate
EIO-LCA using semantic text similarity matching by leveraging the text descrip-
tions of the product and the industry sector. CaML outperforms the previous man-
ually intensive method, yielding a MAPE of 22% with no domain labels.

1 INTRODUCTION

Figure 1: CaML uses semantic text similarity to estimate CO2e emissions with EIO-LCA.

Household products and services contribute to 60% of greenhouse gas emissions Ivanova et al.
(2016). Life Cycle Assessment (LCA) is a scientific framework that is used to estimate environmen-
tal CO2e emissions of products starting from raw material extraction to disposal or other end-of-life
pathways Hauschild et al. (2018); ISO (2006). To precisely estimate the carbon embodied in a
product, we need to know the materials and processes of manufacturing, transport data from manu-
facturer to customer, emissions during use such as fuel for a stove, and how the product is disposed.
EIO-LCA reduces the effort involved by estimating the aggregate sector-level CO2e emissions based
on the materials and energy use measured through economic transactions Suh (2009); Yang et al.
(2017). To assign carbon emissions to a product, we need to find its corresponding industry sector
defined by standards such as North American Industry Classification System (NAICS) Krishnan &
Press (2003). We consider products sold in the United States (US). The US government publishes
the kgCO2e per dollar estimate for aggregated NAICS codes Ingwersen et al. (2022).

Picking from one of 1K+ NAICS codes is time consuming. To reduce annotation burden, car-
bon footprint reports aggregate products into categories, and then map the category to an industry
sector Amazon (2021); Kucukvar et al. (2019). We consider the manual product category mapping
based carbon emission estimates as our baseline. Our CaML (carbon assessment with ML) algorithm
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uses SBERT, a bi-encoder transformer model that generates a vector embedding given a sentence as
an input, and uses cosine similarity between sentence embeddings as a measure of semantic similar-
ity Reimers & Gurevych (2019). Figure 1 illustrates the CaML algorithm. Appendix A provides an
overview of LCA, and summarizes prior works in EIO-LCA automation. To our knowledge, we are
the first to study zero-shot ML for EIO-LCA. We open source our code and dataset.

2 CAML METHODOLOGY

CaML uses the “all-mpnet-base-v2” model from the sentence-transformer library because it gives
the best average performance across sentence similarity benchmarks HuggingFace (2022). The
model has been trained on 1 billion sentence pairs from a collection of 33 NLP datasets. The model
consists of 110M parameters, is of size 420MB, and outputs 768 dimensional embeddings. We use a
sentence length of 128 tokens, which translates to about 100 English words; the rest of the sentence
is truncated. We include an ablation analysis of our parameter choices in Appendix I.

NAICS codes have multiple industries associated with them even at the lowest level in the hierarchy
(see Figure D in Appendix). CaML treats each industry description as a separate sentence in our se-
mantic matching algorithm. The specificity of the NAICS description helps find improved matches.
In total, we have 11623 NAICS sentences. We observe the best performance when we concatenate
the detailed industry descriptions with their corresponding BEA title, as we show in Appendix I.

Algorithm 1: Pseudocode for CaML
Input : product text, naics text list, eio lca table
Output: product kgCO2e per dollar
similarity scores = []
product text = preprocess(product text)
product embedding = model(product text)
for naics text in naics text list do

naics text = preprocess(naics text)
naics embedding = model(naics text)
similarity scores.append(
cosine similarity(naics embedding, product embedding))

naics index = arg max(similarity scores)
naics match = naics text list[naics index]
product kgCO2e per dollar = eio lca table(naics match)

Algorithm 1 gives an overview of CaML. Both the product text and NAICS text are fed as inputs to
the SBERT model after pre-processing to get their corresponding embeddings. CaML computes the
cosine similarity of the product embedding and all the NAICS embeddings, and picks the NAICS
code corresponding to the embedding with the highest similarity score as the best match. The EIO-
LCA table consists of kgCO2e/$ values for each NAICS code. A lookup from this table gives us
the product kgCO2e/$. Appendix E details our dataset, metrics, and pre-processing methods.

3 RESULTS

We collect three sets of annotations with 210, 6646, and 40000 products respectively. The datasets
follow a long-tailed distribution. There are 519 unique NAICS codes in the 40K dataset, where 20%
of the codes account for 77% of the products. Other datasets follow a similar distribution. Table 1
summarizes our results.

3.1 DEEP DIVE WITH SMALL DATASET

We start our analysis from the 210 food products annotated by both experts and non-experts. The
scale of annotation is small as we have access to only a few experts. We annotated a total of 288
food products with experts, of which only 210 had a match in the top-5 predictions by the model.
Therefore, the recall for this dataset is 73%. We did not collect the expert ground truth for products
with no good matches, and use the remaining 210 products for further analysis.
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# Products Ground Truth Predictor Acc. MAPE R2 # NAICS

Human-level performance: Expert vs Non-expert annotations

206 Expert Non-expert (>2/5 votes) 46% 30% 0.21 63
132 Expert Non-expert (>3/5 votes) 54% 29% 0.43 63
134 Expert 1 Expert 2 49% 13% 0.44 35

Baseline: Product category vs individual product mapping by humans

27708 Non-expert (≥2/5 votes) Category mapping 11% 51% -0.22 503
16960 Non-expert (≥3/5 votes) Category mapping 12% 49% -0.24 472
4591 Non-expert (≥2/5 votes) Category mapping 17% 40% -0.62 244
2817 Non-expert (≥3/5 votes) Category mapping 20% 40% -0.61 206
159 Expert Category mapping 28% 31% -0.47 58

Proposed: Zero-shot CaML model vs human annotations

38218 Non-expert (≥2/5 votes) Zero-shot Model 48% 22% 0.45 519
23283 Non-expert (≥3/5 votes) Zero-shot Model 54% 19% 0.53 497
6318 Non-expert (≥2/5 votes) Zero-shot Model 67% 12% 0.57 260
3879 Non-expert (≥3/5 votes) Zero-shot Model 78% 8% 0.75 225
210 Expert Zero-shot Model 48% 25% 0.34 63

Proposed: Fine-tuned CaML model vs human annotations – 4-fold cross-validation results

6318 Non-expert (≥2/5 votes) Fine-tuned Model 52% 22% 0.19 260
3879 Non-expert (≥3/5 votes) Fine-tuned Model 58% 20% 0.19 225
210 Expert Fine-tuned Model 63% 20% 0.45 63

Table 1: Summary of experiment results. We treat the NAICS code from the ‘Ground Truth’ column
as the ground truth and compute metrics against the predicted NAICS codes in the ‘Predictor’ col-
umn. Accuracy measures the correctness of the NAICS code prediction, MAPE and R2 measure the
mean absolute percentage error and coefficient of determination with respect to kgCO2e per dollar.

Human Annotation Performance
We have 5 non-expert annotations per product, and we only consider products for which at least two
annotators agree. We pick the NAICS code that receives the highest number of votes as a ‘Match’,
breaking the tie randomly when multiple NAICS codes received two votes each. We refer to the
corresponding dataset as Non-expert ≥2/5. 206 of the food products we consider received at least
two votes per NAICS code matched. We also report the result with a variation of the dataset where
we consider only those products for which a single NAICS code received more than three votes.
However, it reduces the number of eligible products to 132 (Non-expert ≥3/5).

If we use the expert labels as ground truth, annotations from non-experts give an accuracy of 46%
for NAICS codes with ≥2/5 votes (random classifier gives <0.1% accuracy). In terms of predicting
kgCO2e/$, the corresponding mean absolute percentage error (MAPE) is 30% with a coefficient of
determination (R2) of 0.21. The accuracy improves to 54% if we use ≥3/5 votes. The relatively
low accuracy shows the difficulty of the task, where the annotator needs to pick from closely related
NAICS codes. Even if we consider annotations by two experts on the same subset of products,
we get an accuracy of only 49%, albeit with an improved MAPE of 13%. Prior works on NAICS
classification report a similar problem with errors in manual labeling, with a dataset of labeled food
related NAICS codes giving only 42% accuracy Wood et al. (2017). Therefore, we consider a model
that predicts at ∼50% or higher accuracy as having human-level performance.

Krippendorff’s Alpha is a standard measure of inter-annotator agreement, measured on a scale of 0
to 1 (0 is perfect disagreement, 1 is perfect agreement). The Krippendorff’s Alpha for our dataset is
0.31 for the 6K food dataset and 0.25 for the 40K generic products dataset. We expect the agreement
to be low given the large number of labels (519 unique NAICS codes) and workers (364). Similar
values have been reported in literature for heavy-tailed distributions Jalalzai et al. (2020).

Baseline: Product Category Mapping
Our baseline is a mapping of product categories to NAICS codes by experts. The product categories
are defined by an e-commerce service. The categories are fine-grained, with >5K of them in our
dataset. Examples of product categories include ‘berries’, ‘clipboards’, ‘fitness accessories’, ‘en-
velopes’. To avoid annotation of each product to a NAICS code, it is common practice to use a
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mapping of product category to a NAICS code for carbon footprint reports Amazon (2021). How-
ever, the categories are designed for a wide-variety of use cases, and may not align with the NAICS
code definitions. For example, an ‘earpiece headset’ has the product category ‘fitness accessories’
but the corresponding NAICS code is ‘telephone apparatus manufacturing’. Of 210 products anno-
tated by experts, we have product category to NAICS code mapping for 159 of them. Considering
the expert annotations as ground truth, the product category mapping gives an accuracy of 28%,
MAPE of 31% and R2 of −0.47. As the set of products that have both the category mapping and the
annotations is a reduced sample (159 as opposed to 210), this is not a fair comparison. Therefore,
we include results with the same set of products in Table H of Appendix H for both the small and
the larger datasets. The results only change marginally, and our conclusions remain the same.

CaML Performance
We evaluate CaML predictions with the SBERT pre-trained model. For the 210 food products
labeled by experts, the model yields an accuracy of 48%, with a MAPE of 25% with respect to
kgCO2e/$. Therefore, the zero-shot CaML model is far superior to our baseline, and marginally
exceeds the performance of non-expert annotations. The errors are primarily caused by words in the
product description that confused the model. For example, one of the products was a ‘cake icing
coloring gel’, and the model labelled it as ‘cake frosting manufacturing’ whereas the LCA expert
picked ‘food coloring, synthetic, manufacturing’.

Surprisingly, CaML performance does not improve significantly after fine-tuning. We include the
details of the experiment in Appendix G We hypothesize that the performance of the model saturates
at ∼50% accuracy due to noisy annotations by non-experts. To improve accuracy, we would need
ground truth labels that can be treated as a gold standard. Future works can endeavour to learn
models that correct for noisy labels Cheng et al. (2020b), and improve annotation quality with better
interface design Daudert (2020).

3.2 MEDIUM TO LARGE DATASETS

The trends we observe in the small dataset continue as we expand to thousands of products. After
filtering out erroneous annotations, we get a total of 6318 annotated food products with ≥2/5 votes.
The baseline of product category mapping gives an accuracy of 17%. CaML zero-shot model, on
the other hand, gives an improved accuracy of 67% with a corresponding MAPE of 12%. Therefore,
CaML again substantially outperforms the baseline. We get 3879 products with ≥3/5 votes, and the
conclusion from the results remain the same. CaML gets an accuracy of 78% while the baseline gets
20%. The annotators have an option to pick ‘No good match’ in the interface, and they do not find
a match for 1.5% of the products with ≥2/5 votes, i.e., our model recall is 98.5%. The improved
recall compared to the smaller dataset with expert annotations reveals a gap in domain knowledge
when we crowd-source labels.

Our results generalize beyond food products. We evaluate CaML on a dataset of 40000 products
from the US retail sector, going beyond food items to include clothing, electronics, pharmacy, au-
tomotive and more. We get 38218 products with ≥2/5 votes, and a corresponding product category
mapping. CaML zero-shot model achieves a recall of 99.7% and an accuracy of 48% compared to
11% with our baseline. The resulting carbon estimate gives a MAPE of 22% for kgCO2e/$ estima-
tion. The results are similar if we consider ≥3/5 votes (Table 1), or control for the same number of
products (Table H in Appendix). Appendix I includes our ablation study results.

Appendix J discusses our limitations and directions for future work.

4 CONCLUSIONS

We presented a semantic text similarity algorithm to estimate carbon emission of household prod-
ucts using EIO-LCA methods. Our algorithm matches a product to a corresponding industry sector
for which there are published carbon emission factors in terms of kgCO2e/$. We annotated 40K
products in the US retail sector, and found the zero-shot model predictions significantly outperforms
manual mapping of product category to an economic sector. We annotated a small sample of prod-
ucts with LCA experts, and find that the model predictions are comparable to the annotations by
a non-expert. These initial results are promising, and significantly reduce reliance on annotations
compared to prior state-of-the-art methods based on supervision.
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APPENDIX

A BACKGROUND AND RELATED WORK

A.1 LIFE CYCLE ASSESSMENT

LCA relies on life-cycle inventory, a dataset containing all relevant environmental, material and
energy flows, to perform impact assessments such as global warming potential (GWP) and fresh
water depletion. Our focus is on GWP, measured as carbon dioxide equivalent (CO2e). There are
two primary approaches to LCA: process-based and Economic Input-Output analysis-based (EIO)
Curran (2018). A process-based LCA is a bottom-up approach that tracks all the inputs (i.e. material
and energy) and outputs (i.e. emissions and environmental wastes) of a product across its supply
chain. The process LCA framework allows practitioners to dive deep into impacts of a specific
product to identify hotspots in the supply chain. However, process-based LCAs are labor and time
intensive, often requiring full tear-downs of the products.

EIO-LCAs take a top-down macroeconomic approach using supply-use tables provided by govern-
ments to estimate the emissions associated with the production of a unit currency worth of a given
good or service. An input-output matrix of industry sectors across the economy captures the inter-
dependencies between the sectors as measured through economic transactions. The matrix quantifies
how the demand in one sector impacts the rest of the economy. Environmental data such as water
withdrawals, green house gases, energy extraction, etc are collected for each sector in the economy,
and are normalized into a unit of currency based on gross economic output by each sector Ingwersen
et al. (2022). This is an established method for estimating carbon emissions when detailed data are
not available for a product. EIO is beneficial because it can be used to conduct LCAs using the
accounting and financial data that companies already track. Leveraging these data sources removes
the need to conduct an inventory of manufacturing a product, which shortens the time required for
the analysis. Because we have a wide variety of products in the market, EIO-LCA can be used
to identify the products that contribute most to environmental impacts, and target those for impact
assessment deep dives.

The EIO-LCA dataset represents the financial transactions for the entire economy and are simplified
by aggregating into industry sectors defined by economic codes such as North American Industry
Classification System (NAICS) Krishnan & Press (2003). To identify the emissions associated with
a product, we need to map it to one of these industry sectors. The government publishes the carbon
emissions for each industry sector in units of kgCO2e/$, multiplying this factor by the sale price
gives us the total carbon emissions of the product.

A.2 ML FOR LCA

ML has been recognized as a method to scale LCA in literature Algren et al. (2021); Ghoroghi
et al. (2022). Prior works have used ML in LCA for buildings Barros & Ruschel (2020), transporta-
tion Perrotta et al. (2018), and various products Wisthoff et al. (2016). We refer the reader to Algren
et al. (2021) for a survey. Froemelt et al. (2018) used ML to cluster houses based on their envi-
ronmental impact using a household consumption dataset. In contrast, we focus on environmental
impact assessment of individual household products. Sousa & Wallace (2006) proposed that ML can
be used to create ‘surrogate’ LCAs for products that lack accurate ground truth information. They
used neural networks to predict the energy consumption of 103 products with a maximum error of
40%. Wisthoff et al. (2016) extended these ideas, and used ML for LCA of prospective design de-
cisions that reduce environmental impact of 37 products. Other works have used ML to dive deeper
into the supply chain of a single product, such as biochar Cheng et al. (2020a) and sugarcane Mur-
sidah et al. (2020), to simulate the impact of design decisions. To our knowledge, we are the first
to attempt EIO-LCA for products at scale. Our dataset is at least two orders of magnitude larger
than prior works. Unlike prior methods that relied on simple supervision, we leverage label text for
zero-shot prediction using language models trained on web data.
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A.3 ML FOR NAICS CODE PREDICTION

Prior works have also used ML for industry sector assignment based on text descriptions. Wood et al.
(2017) matched companies to NAICS codes using text data scraped from the web. They use bag-of-
words, term frequency-inverse document frequency (tf-idf) for feature extraction, and a multi-layer
perceptron for classification. The U.S. Bureau of Economic Census used write-in surveys to classify
new businesses to specific NAICS codes using bag-of-words and logistic regression Dumbacher &
Russell (2019). Oehlert et al. (2022) use ML to validate NAICS codes reported in company tax forms
using tf-idf and random forests. All of these works rely on a large labeled dataset for supervision.
For example, Wood et al. (2017) use 4 million labeled data points.

The Office of National Statistics in the UK use pre-trained embeddings to cluster companies and use
Singular Value Decomposition (SVD) to extract descriptions for the cluster Snow & Team (2018).
In contrast, our work matches products to existing NAICS codes with minimal labeling. Use of
pre-trained language models also helps us support text from multiple languages, called out as a
challenge in prior works. We focus on matching products to NAICS codes instead of companies
because a single company can manufacture products that belong to multiple NAICS codes, e.g.,
Adidas manufactures both sports gear and apparel. Working with individual products gives us a
more precise estimate of carbon emissions.

A.4 NATURAL LANGUAGE MODELS

We use pre-trained SBERT models for encoding our text features Reimers & Gurevych (2019).
SBERT has been used in a similar fashion for applications such as fact-checking Kotonya &
Toni (2020), cyberbullying detection Gencoglu (2020), and author representation Rivera-Soto et al.
(2021). Our algorithm is similar to the label embeddings proposed by Zhang et al. (2018). We do
not claim novelty in NLP algorithms, and instead demonstrate that application of state-of-the-art in
NLP can lead to step change in performance in the domain of LCA. While our results are promising,
it can be potentially improved by exploiting the hierarchical structure of our labels Miyazaki et al.
(2019); Shen et al. (2021), or framing the problem as an entailment task MacCartney & Manning
(2008). We hope our work leads to further research into challenging tasks in the domain, such as
automation of process-based LCA which requires extraction of bill-of-materials of products Babbitt
et al. (2020), and inferring environmental impacts from product disclosure documents International
Organization for Standardization (2006).

B DATASET AND CARBON ATTRIBUTION

We have selected the NAICS codes as the primary unit to which a product will be mapped to. NAICS
is published by the US Census Bureau Krishnan & Press (2003) and the commodities (products
and services) in each NAICS code represent detailed resolution of industry classification. A single
NAICS code can contain multiple industries. The 6-digit NAICS code are organized hierarchically,
with 4-digit and 2-digit NAICS codes forming two levels in the hierarchy. Figure D in Appendix
illustrates an example.

These NAICS codes are further translated to another set of economic codes called Bureau of Eco-
nomic Analysis codes BEA (2022). BEA codes aggregate multiple NAICS codes into higher level
industry descriptions, which typically map to the corresponding 4-digit NAICS code. For example,
the NAICS codes for chocolate and candy making (311320), granulated sugar production (311313),
and crystallized fruits making (311340) all map to the BEA code for sugar and confectionery prod-
uct manufacturing (311300). These BEA codes can then be used to calculate carbon emissions using
the USEEIO (US Environmentally Extended Input Output) model published by the EPA Ingwersen
et al. (2022). The USEEIO model assigns a carbon emissions number with units of kg CO2 equiv-
alents per $1 (kgCO2e/$) of commodites produced by the industries in a BEA code. If the product
being mapped is an artisanal chocolate bar costing $5, then it is first mapped to the NAICS code for
chocolate making (311320), and then translated into the BEA code for sugar/confectionery produc-
tion (311300), and is finally assigned 5.7 kgCO2e (1.14 kgCO2e$ x $5). We use the NAICS data
available from https://naics.com/ and carbon emission data published by Yang et al. Yang
et al. (2017).
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We use products sold in the US from an e-commerce retailer. We create two datasets - one con-
taining 40000 products, and another with 6646 food products for our experiments. The food dataset
represents products from a variety of industry sectors to evaluate our method. In comparison, sectors
such as books have minimal variations. For product description, we use a concatenation of the fol-
lowing texts from the product web page: title, description, and bullet points that describe additional
attributes.

C DATA PRE-PROCESSING

We clean the product and NAICS text descriptions using the Natural Language Toolkit Loper & Bird
(2002). We convert the text to lower case, and replace punctuation with underscores. As our de-
scriptions are in English, we remove stopwords such as ‘a’, ‘the’, ‘and’. We use lemmatization, and
remove extra spaces, numbers, and special characters like parentheses. We remove repeating words
such as ‘manufacturing’ and ‘production’ from NAICS text descriptions as they do not aid in classifi-
cation. While such text cleaning procedures are not strictly required for natural language processing
(NLP) models like SBERT, we find that cleaning the text leads to improvement in performance. We
hypothesize that product descriptions often include special characters and formatting that impacts
model performance. We present the impact of text pre-processing on model performance with an
ablation analysis in Section I.

D HIERARCHY OF NAICS CODES

figureNAICS codes represent economic sectors defined by the US government.

E ANNOTATIONS AND METRICS

Given a product embedding, CaML ranks the NAICS sentences by the cosine similarity score of
their embeddings. The top matches of NAICS sentences typically correspond to the same NAICS
code. Therefore, CaML considers the top-20 matches, and aggregates them by their NAICS codes.
After aggregation, we consider the top-5 NAICS codes ranked by decreasing cosine similarity for
annotations. It is possible that the top-20 NAICS sentence matches yield less than 5 unique NAICS
codes, we use them as-is for annotations. Figure 2 shows an example of our annotation task for an
artisanal chocolate in our annotation interface after finding the top NAICS codes using the CaML
algorithm. The artisanal chocolate has 10 NAICS sentence matches that belong to the same NAICS
code in the top-20 matches. CaML aggregates the top-20 NAICS sentences to get 3 unique NAICS
codes. We also include an equivalent Jupyter notebook based annotation interface in Figure F of
Appendix F.
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Figure 2: Screenshot of the annotation task from Amazon SageMaker GroundTruth. We provide
product and NAICS text descriptions to the SBERT model and find the top NAICS code matches
for a product using cosine similarity. A crowd-source worker labels if the top ranked NAICS codes
match the given product description. It is possible that there is more than one match or none at all.

We use an annotation service for labeling the data at scale. Given the product description, an an-
notator can mark if each of the NAICS codes are a ‘Match’ with a checkbox, which we translate
to a label of 1 or 0. It is possible that there is more than one match or none at all. The annotator
can choose to skip products if unsure. They can also look up the product on the web, and verify
the description of NAICS code online. We categorize our annotators as non-experts (crowd-sourced
workers in the annotation service).

We also annotate a small sample of products with LCA scientists, and refer to them as expert an-
notations. An expert uses their experience of interpreting the constituents of the supply chain of a
product when assigning a NAICS code. When they compare the product and NAICS description
for annotations, they estimate the possible upstream industries that make up the supply chain of the
product. E.g., for a chocolate drink some of the possible NAICS codes are ‘chocolate liquor’, and
‘chocolate milk’. An LCA expert knows from their experience that such drinks have a milk com-
ponent in their supply chains and they map the product to ‘chocolate milk’ without hesitation but a
non-expert may get confused between the two mappings.

We performed a pilot experiment with 10 products across three pools of workers, with associated
costs of $0.012 (low complexity), $0.024 (medium complexity) and $0.36 (high complexity) respec-
tively. Each product received three annotations to infer a consensus among workers. We found that
the accuracy of annotations were similar regardless of the costs. We chose the medium complex-
ity worker pool for larger scale experiments as their throughput (annotations per second) was the
highest. We gather 5 annotations per product for larger experiments to increase fidelity.

For evaluating model performance, we only consider the top match ranked by cosine similarity.
We consider a NAICS code prediction as correct if it is marked as a ‘Match’ by the annotator.
In many cases, the NAICS codes marked by the expert, and the one matched by the model may
be similar. For example, an expert marked a product as ‘soft drink manufacturing’, whereas the
model matched it to ‘bottled water manufacturing’. Both the NAICS codes map to the same carbon
emission factor obtained from the EIO-LCA database. Therefore, we also measure the regression
error in the estimation of carbon emissions in terms of kgCO2e/$.

We perform all our experiments on a p3.2x instance in Amazon Web Services, which contains an
NVIDIA V100 Tensor Core GPU AWS (2022). Model inference time with this instance is 0.55 ms
on average. It takes an average of 117.4 ms to compute the best NAICS match for a product using
cosine similarity. We have made our code available in the supplementary material.
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F ANNOTATION TASK

figureScreenshot of the annotation task from our Jupyter notebook. We provide product and
NAICS text descriptions to the SBERT model and find the top NAICS code matches for a product
using cosine similarity. An annotator labels if the top ranked NAICS codes are a ‘Match’ or ‘Not a
match’. We use the annotations as labels for fine-tuning the SBERT model. It is possible that there
is more than one match or none at all. In the example shown above, the first two options are good

matches as they both describe a chocolate industry. It is difficult to tell from the product description
if the manufacturer purchased the chocolate or made it directly from cacao beans.
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G HYPER-PARAMETERS

We fine-tuned the model with 4-fold cross-validation. We use the correct NAICS code (as per expert
annotation) among the top-5 ranked by the model as the positive example, and the other four codes
as hard negatives. We use cross-validation as the 210 products dataset is small relative to typical ML
datasets, and we want to evaluate the performance across all the datapoints. We experimented with
different hyper-parameters manually in one of the four folds to improve performance: the number of
epochs, the length of sentence, and different ways to clean text. The model performance remained
stable with changes to hyper-parameters, with a change in accuracy of <2%. We report the results
from the best of these hyper-parameters after evaluation on all four folds, and use the same hyper-
parameters for the other datasets.
We manually tuned the hyper-parameters in one of the four folds of our 210 product dataset. We
provide the range of hyper-parameters we tuned, and the final values in Table G. The rest of the
hyper-parameters are the default values listed in sbert.net.

tableHyper-parameters for fine-tuning the CaML model.
Hyper-parameters Tuning Range Final Value
Token length {128, 256, 512} 128
Epochs 4 - 10 5
Warm up steps – 100
Batch size – 16

H RESULTS WITH SAME NUMBER OF PRODUCTS

tableResults where we control the number of products to be the same in both baseline and proposed
solution. We treat the NAICS code from the ‘Ground Truth’ column as the ground truth and

compute metrics against the predicted NAICS codes in the ‘Predictor’ column. Accuracy measures
the correctness of the NAICS code prediction, MAPE and R2 measure the mean absolute

percentage error and correlation of determination with respect to kgCO2e per dollar.
# Products Ground Truth Predictor Accuracy MAPE R2

Human-level performance: Expert vs Non-expert annotations
156 Expert Non-expert (≥2/5 votes) 44% 31% 0.29
132 Expert Non-expert (≥3/5 votes) 54% 29% 0.43
134 Expert 1 Expert 2 49% 13% 0.44

Baseline: Product category vs individual product mapping by humans
27708 Non-expert (≥2/5 votes) Category mapping 11% 51% -0.22
16960 Non-expert (≥3/5 votes) Category mapping 12% 49% -0.24
4591 Non-expert (≥2/5 votes) Category mapping 17% 40% -0.62
2817 Non-expert (≥3/5 votes) Category mapping 20% 40% -0.61
156 Expert Category mapping 27% 32% -0.47

Proposed: Zero-shot CaML model vs human annotations
27708 Non-expert (≥2/5 votes) Zero-shot Model 49% 22% 0.44
16960 Non-expert (≥3/5 votes) Zero-shot Model 55% 18% 0.50
4591 Non-expert (≥2/5 votes) Zero-shot Model 67% 13% 0.60
2817 Non-expert (≥3/5 votes) Zero-shot Model 78% 8% 0.77
156 Expert Zero-shot Model 49% 25% 0.40

I ABLATIONS

We perform an ablation analysis to quantify the impact of our design decisions. All the results are
based on the large 40000 products dataset. We start with variations of text pre-processing, summa-
rized in Table 2. If we do no pre-processing and use raw text as model input, the performance drops
dramatically (-20.9% in accuracy, +14.5% in MAPE). If we do not remove English stop words or
common words in NAICS description then accuracy drops by ¿5%, although the impact to regression
metrics is lower. Other pre-processing steps have minor impact.
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Method Accuracy MAPE R2
No pre-processing 27.3% 37% -0.005
Keep numbers 44.2% 25.9% 0.38
Keep stop words 36.1% 29.3% 0.29
No lemmatize 43.2% 24.8% 0.38
Include common words 35.8% 28.3% 0.21
Default 48.2% 22.5% 0.45

Table 2: Ablation of text pre-processing methods. Our default method in CaML removes numbers,
removes English stop words, uses lemmatization, and removes common words in NAICS text such
as ‘manufacturing’.

Method Accuracy MAPE R2
BEA title only NA 49.2% -0.02
NAICS title only 13.9% 57.4% -0.75
NAICS + BEA title 20.6% 43.4% -0.1
NAICS description 32.5% 35.4% -0.005

Default:
NAICS description + BEA title 48.2% 22.5% 0.45

Table 3: Ablation of NAICS text input. CaML uses a concatenation of NAICS industry description
and BEA title.

Next, we ablate the NAICS text that is used to create the label embedding (Table 3). The label
that is directly attributed to the carbon emissions is BEA title. However, the title description is too
vague to match with specific products. For example, the BEA title of ‘Oilseed’ includes a variety
of products such as mustard, soybean, flaxseed, and canola. The SBERT models do not infer such
hierarchical relationships and give a low cosine similarity score. This leads to poor performance,
MAPE increases by 26.7% compared to our default method. As we increase the specificity of the
text input, the performance improves. However, we see the best performance with a concatenation
of detailed NAICS industry description and the BEA title, which captures the relationship between
them.

We vary the sentence length of the inputs to the SBERT model, and found the performance improves
with increasing length (Table 5). Performance is worst at 32 tokens with a 7% reduction in accuracy.
The performance saturates at 128 tokens, which is the default choice for the rest of the results.

We measure the impact on performance by using different SBERT pre-trained models for zero-
shot prediction of NAICS codes (Table 5). The performance is inline with the benchmark results
published in sbert.net, with a decrease in performance as model size decreases. The ‘all-*’
models were trained on generic text with over 1 billion training pairs. The ‘qa*’ models were trained
on question and answer sentence pairs and ‘paraphrase*’ models were trained for paraphrase mining
dataset. The generic ‘all-*’ models trained with the largest dataset yield the best performance. The
‘mpnet’ model outperforms other models of similar size due to an improved training objective that
uses permuted language modeling instead of masked language modeling used by BERT Song et al.

Sentence length Accuracy MAPE R2
32 41.2% 27.7% 0.31
64 44.8% 24.8% 0.4

Default: 128 48.2% 22.5% 0.45
256 48.2% 22.5% 0.45
512 48.2% 22.6% 0.45

Table 4: Sensitivity to sentence length on CaML performance
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Pre-trained Model Acc MAPE R2 Size

paraphrase-albert-small-v2 17.0% 53.2% -0.32 43MB
all-MiniLM-L12-v2 25.6% 39.2% -0.15 120MB
all-distilroberta-v1 21.6% 44.4% -0.41 290MB
multi-qa-mpnet-base-dot-v1 27.1% 38.3% -0.06 420MB
paraphrase-multi-mpnet-base-v2 20.9% 44.5% -0.07 970MB

Default: all-mpnet-base-v2 48.2% 22.5% 0.45 420MB

Table 5: CaML performance with different pre-trained SBERT models.

Model Accuracy MAPE
XGBoost + TF-IDF + Classification 21.3% –
XGBoost + TF-IDF + Regression – 52.9%
XGBoost + SBERT + Classification 25.6% –
XGBoost + SBERT + Regression – 45.7%

Default: zero-shot CaML 49.4% 22.3%

Table 6: Comparison of CaML zero-shot performance with fully supervised solution

(2020). The ‘MiniLM’ model outperforms ‘distilroberta’ with an distillation method Wang et al.
(2020).

We train fully supervised models on the 40000 product dataset and compare against CaML zero-
shot performance, splitting the data by 3:1 for train and test. We use XGBoost models with default
hyper-parameters, a well-known and robust algorithm Chen & Guestrin (2016). We evaluate both
TF-IDF vectorization Ramos et al. (2003) and SBERT embeddings to convert raw text into vectors.
The results are poor, with less than half the performance of the zero-shot CaML model (Table 6).
We ensure that at least 2 datapoints exist for each class. The number of NAICS code in the dataset
drops from 519 to 444, indicating the large number of classes which only had one datapoint. The
highly imbalanced nature of the dataset makes it challenging to learn a good supervised model with
just 40,000 datapoints. The challenging nature of NAICS code classification has been observed
by prior work. Even with 4 million labelled datapoints, Wood et al. Wood et al. (2017) achieve a
classification accuracy of only 47.9%.

J LIMITATIONS AND FUTURE WORK

We focused on text based prediction of industry sectors. In some cases, the product text descriptions
are ambiguous because of branding and keywords optimized for search engines. Use of product
images with a multi-modal model can generate more appropriate embeddings. The hierarchy of
NAICS codes can also be exploited to improve classification accuracy by encoding it as part of the
loss function Yu et al. (2022).

Although we mapped products to NAICS codes to complete the EIO-LCA, process-based LCAs face
similar manual bottlenecks. For example, when conducting a process-based LCA, one must first
identify the materials and manufacturing processes used to create a product. Then, each material
or process must be assigned to the most appropriate environmental impact factor. Additionally, this
work enables us to not only quantify greenhouse gas emissions of a product category, but also opens
the door to include water, waste, biodiversity, and a host of other environmental and socially relevant
impact categories in future LCAs.

We want to empower consumers to understand and reduce their own carbon footprints. The first
enabling step in that direction is footprint estimates for the products. The effort to more accurately
map hundreds of millions of products to the most appropriate environmental impact factor requires a
scalable and accurate prediction algorithm. Use of machine learning is new in this domain. We have
made initial strides towards estimating carbon emissions at scale. For downstream applications, we
need to determine the uncertainties associated with the model predictions, and take the uncertainties
into account in decision making.
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While we have focused on estimating the overall carbon footprint, there is additional work required
to compare two products and determine which of them have lesser carbon emissions. To make such
decisions, we need to be more precise about which aspects of the product that impact the carbon
footprint. Currently such work is done manually by experts, tools to automate or augment such
decisions are an important direction of future work.
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