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Motivation - Los Alamos
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Primary focus on the domain specialist end-users. What do they want from
a DL / statistical/ <insert your favorite> model?

* Improved Accuracy

* Maximum interpretability / Intuition = consistent physics
* Robustness

* Developed on real world physics (very challenging)

Our philosophy:

 Satisfy physics in DL model by design with inductive bias.
* Add transparency to black box DL models.
 Strive for better accuracy , BUT trade-off with interpretability + robustness.
* Need simple dataset to develop algorithm, but need to retain realism:
Use 3D, fully developed, turbulence
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Test Case: Homogenous Isotropic .'LosAlamos
Turbulence (HIT)

EST.1943

DNS dataset of HIT in a cube — stationary in time. Periodic boundary conditions

Goal: Learn spatio-temporal 3D dynamics from few snapshots Domain Size: 1283

Training Data: 0 — | eddy time. Test Data: > |.5 eddy times.
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Incompressible flows are “divergence-free”, Can we... J Los Alamos
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1) Guarantee divergence-free inductive-bias in the CNN
regardless of training hyper-parameters?

2) Guarantee boundary conditions always enforced?

Instead of loss functions, we directly embed mass conservation law into
network architecture

V=VX A ~+ Vl/) A is potential vector field

V . V — O U is velocity field

Vi = O for periodic BCs in HIT simulation

If we canlearn V as VV = V X A4, we automatically satisfy
Divergence free condition V-V =0

Strategy: Embed the boundary conditions and CURL operator V X
in the autoencoder network.
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Physics-Embedded Convolutional A
Autoencoder for 3D flow (PhyCAE) v
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Physics Embedded Decoder

A is reconstructed vector potential field — let network “choose” appropriate gauge!
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Injecting Differential Operators into CNN ,
» Los Alamos
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Need a method that is time-tested, interpretable,
And already used in production........ Numerical

Methods

In PDE Finite Difference (FD)/ Volume discretized (FV) solvers also perform
convolution of a kernel f with the spatial domain g

h = f * g
f is differential operator kernel - from Taylor Series approximations of expressions
(approximated to numerical order)

g is the solution residing on a mesh

d
Y xz4+éz)—dp(x—ox _—
ai) = St 9 —99) 1 O(Sz)? 1 =52
' G
0P _ ¢(y+6y>2g¢(y—5y) + O(6y)? Kernel form [ h, = @*
dy Y
‘ d
d¢ _ P(2+62)—¢p(2—92) 5 2 h3 —_ %
Oz 25z I O( Z) 0z

FV stencil for 2" order Central differencing
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FD/FV Stencils [0[1 Convolutional Network

Kernels . Los Alamos
[ 0 0 07
a_qb = |- o0 L
ox 20 20x = |
0 0 0 Stencil Kemel | Stride = 1in CNN
0 e & BN | | with differential kernels
% _lo o o computes hy, h,, hs
dy X To numerical accuracy
0 555 Ol
" 0 0 0]
D¢ 1 1
9: — |"w U bong et AL 2017
0 0 0|

- Spatial derivatives > Convolutional kernel of constant weights in FDM/FVM s

- Backpropagate thru operators defined by derivatives e.g. V x 4, V -
- Easier book-keeping, can utilize existing parallel/distributed training infrastructure
for CNNs in Pytorch/Tensorflow

BUT still need boundary conditions to be strictly enforced.....
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Consistent Boundary Conditions in CNN

. o > Los Alamos
Like PDE solvers, ensure BCs are always present during training, NATIONAL LABORATORY

and not minimize as a constraint |

Solution: Ghost Cell approach from CFD. Established approach in community!

Instead of zero/reflection padding [ Build custom padding to enforce periodicity
with Ghost cells

Ghost Cells Periodic BCs

Pprer;= Do,

Numerical ¢M,j

gt el Can increase/decrease ghost cells for desired
] order of accuracy with FV numerical stencil
(@]
»
3 Qi N+1.k = @i0,k
oy}
Q Qi N+2.k = Oil.k
| _ Qi,N+3.k = Qi2k
¢i,0 j d')i,N ¢i,N+1_ q>i,o TR0 -
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RESULTS: Q-R plane morphology of Small, Inertial

and Large Scales — Stringent test of 3D

turbulence
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+ Los Alamos
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Coarse-graining
excellent accuracy

for large scales : Small
scales are largely
neglected.

Large scales critical
for several
applications

Compression ratio
size(original)/size(latent
space) ~ 300x
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Learning: Unconstrained Network vs |
Physics Embedded Network iU
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- Los Alamos
Summary NATIONAL LABORATORY
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Architecture integrates CFD/numerical methods with CNNs for
embedding mass conservation.

General framework to embed boundary constraints and compute various
operators as a CNN, with desired Finite Volume/Finite Difference schemes
No increase in trainable parameters compared to the generic, unconstrained
network.

Useful when we don’t have the full governing equations, but only know
constraints.

Architecture with strong inductive bias for incompressible flow: More
Interpretable

S X © <

General strategy to learn 3D fields with constraint of form

LV)=¢G

Where L is a differential operator
A Mohan, N. Lubbers, M Chertkov, D. Livescu arXiv: 2002.00021
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