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Agricultural drought is a significant global problem,
and is getting worse.
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Kenya distributes emergency funds using a
vegetation index, mitigating the impact of droughts.
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We sought a machine-learning based approach to
forecast vegetation health.
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There is friction in applying machine learning to

drought forecasting

A very large input space (above: ERA5 land
variables from the Copernicus Climate Data
Store)
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Going from climate data formats (e.g. NetCDF)
and storage conventions to something which a
machine learning model can ingest



Our pipeline* aimed to reduce this friction
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from pathlib import Path
from src.models import LinearRegression

model = LinearRegression(Path("path_to_data"))
model.train()

*https://github.com/ml-clim/drought-prediction



https://github.com/ml-clim/drought-prediction

We used it with the following datasets and models:

Copernicus Climate Data
/@\ Store
ERAS5 Climate Reanalysis data

A C H G Climate Hazards Group

1 INJ InfraRed Precipitation data

Climate Hazards Group

Persistence Baseline

Linear Regression

(CHIRPS) Linear Neural Network

_ pu Global Land Evaporation LSTM
gﬁ@gﬁﬁ% Amsterdam Model
Evapotranspiration and Soill

Entity-Aware LSTM
Moisture

““; CGIAR-CSI
w Wl Shuttle Radar Topography
“"’ Mission Data



Using this pipeline, we were able to achieve results
competitive with SOTA to predict vegetation health
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District Adede et al. (2019) Persistence LSTM EALSTM *

Mandera 0.94 0.66 0.88 0.94
Marsabit 0.94 0.74 0.93 0.93
Turkana 0.91 0.74 0.98 0.95
Wajir 0.96 0.72 0.84 0.92
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* Our predictions are much more spatially granular (pixel wise vs. district wide) than the current SOTA. In order to make models comparable we downscale
our predictions to district-level and compare results at this scale. Here we show a table of results for four arid counties in the North of Kenya.



We have started using trained models to investigate
the relationships between vegetation health and
weather.
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This is how our models need to improve to become
operationally useful.

L1

L9 ‘

e 4 :

Uncertainty Quantification Predict the Extremes Validate Response to
Forcings

A



https://github.com/ml-clim/drought-prediction
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