ADVANCING RENEWABLE ELECTRICITY CONSUMPTION WITH REINFORCEMENT LEARNING

Filip Tolovski

Climate Change AI workshop ICLR 2020

April 26, 2020

Goal

Reducing the share of coal and natural gas in electricity generation.

Challenge

Addressing the intermittence of renewable electricity in the absence of scalable storage options.

Proposed solution

Shift the customers electricity demand to periods of oversupply due to peak in renewable electricity generation.

Intermittence of solar energy sources

Generation can be inconsistent to the customer load demand

Difference between forecasted load and expected electricity production from intermittent energy sources

• Source: California Independent System Operator

Intermittence of wind energy sources

Generation is consistent to the customer load demand

October 10th - Highest daily wind generation for 2017

Generation is **not** consistent to the customer load demand

May 21st and 22nd - Example for variable wind generation

Source: MISO (Midcontinent Independent System Operator) North Planning Zone and https://www.greentechmedia.com/

Reinforcement Learning Approach

Environment:

- Customers
- Electricity generation utilities
- Weather conditions
- Historical demand data

Agent:

Energy trading utility

Action:

Energy retail price

State and action

Reward Function

Objectives:

- Decrease the difference between the supply of renewable energy and demand
- Keep the energy utility profitable

$$r(s,a) = \sum_{j=1}^{2} \alpha_j r_j(s,a)$$

- $r_1(s, a) = (Price_{retail}(s, a) Price_{wholesale})$
- $r_2(s,a) = -(Energy_{renewable} Energy_{demand}(s,a))^2$
- Hyperparameter α_i initially set to 1

Simulation Environment

- Customers- previously trained demand response agents in CityLearn
- Customers independent or cooperative
- A number of different simulation environments combining customer agents
- Distribution of customer agents in an environment set to mimic physical environment

Training

Training across all simulation environments

Training in physical environment

- Increase the sample efficiency
- Reduce the costs and the risks of training in the physical environment
- Increase the robustness of the agent in the physical environment
- Increase generalization across physical environments

Safety and Explainability

- Safety is ensured using a constraints on the price it signals to the customers
- Evaluation of safety summary of all violations to the constraints
- Learning a policy as a function of the constraint level
- Tracking the performance on the two objectives of the reward function

Summary and further work

 Pricing agent and an appropriate simulation environment, used for training and evaluation

- Addressing the challenges of safety, robustness and sample efficiency with a simulation environment
- Implementation of the simulation environment(ongoing)
- Further training of the customers with the pricing agent

Thank you for your attention!

Filip Tolovski

Climate Change AI workshop ICLR 2020

April 26, 2020