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Motivation
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• Deforestation and forest degradation accounts for ~15% of all global 

greenhouse gas emissions [1]

• International stakeholders are paying landowners for forest conservation, 

if they can verify it [2]

[1]  IPCC. 2019: Summary for policymakers, WWF
[2]  UN-REDD Programme, www.goldstandard.org

www.reforestationworld.org

https://www.goldstandard.org/


•  On-ground inspection is expensive (300 

USD/ha[3]), biased, hard to scale, and 

corruptible

Monitoring, reporting and verification process
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• Carbon estimates by satellites can have 

high uncertainties and long lead times

[3] Interviews with Ministry of Agriculture Peru
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• Low-cost monitoring  via drones
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Challenge

• Opens up possibility of untruthfully reported imagery

• Attack vectors
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Forest validation algorithm

How to distinguish truthful imagery from untruthful imagery?

• Image Registration: Matching Drone images with Satellite images

Model and Classifier
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Nominal Metrics not able to detect attacks

• Nominal distance metrics of MSE in pixels space

MSE

Satellite  image

Drone image
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• MSE in pixel space

ground truth
wrong time
wrong location



Nominal Metrics

• Nominal distance metrics of MSE in feature space
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• MSE in feature space

ground truth
wrong time
wrong location



Learned Metrics

• MSE in pixel space and RESISC-45 feature space not sufficient
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Learned Metrics
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• MSE in pixel space and RESISC-45 feature space not sufficient

• Metric learning with triplet loss function

Learned 
distance



Metric Learning with Triplet loss

Training
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Metric Learning with Triplet loss
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First Results on Dataset in Indonesia
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• Dataset:

10 different locations, 3 different years



First Results on Indonesian Dataset
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Satellite anchor rt-rl wt/wl 

• Difference between satellite image and drone images
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Conclusion and Further Work
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• Model with metric learning is able to distinguish truthfully reported imagery 

from untruthfully reported imagery

• Model evaluation on more training and testing data to ensure high reliability

• Protecting model from Adversarial perturbation

• Metric learning with images from different sources with different resolutions
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