TRUEBRANCH

METRIC LEARNING-BASED VERIFICATION OF FOREST CONSERVATION PROJECTS

Simona Santamaria* ssimona@ethz.ch David Dao* david.dao@inf.ethz.ch Björn Lütjens* lutjens@mit.edu Prof. Dr. Ce Zhang ce.zhang@inf.ethz.ch

Motivation

- Deforestation and forest degradation accounts for \sim 15% of all global greenhouse gas emissions ^[1]
- International stakeholders are paying landowners for forest conservation,
 if they can verify it [2]

www.reforestationworld.org

Monitoring, reporting and verification process

On-ground inspection is expensive (300 USD/ha^[3]), biased, hard to scale, and corruptible

 Carbon estimates by satellites can have high uncertainties and long lead times

Verification with Drones

Low-cost monitoring via drones

Challenge

- Opens up possibility of untruthfully reported imagery
- Attack vectors

Reported Land-Use

true time true location

Detected medium **Forest Cover**

wrong time true location

high

true time wrong location

high

modified image

high

Approach - True Branch Verification System

Forest validation algorithm

How to distinguish truthful imagery from untruthful imagery?

Image Registration: Matching Drone images with Satellite images

Nominal Metrics not able to detect attacks

Nominal distance metrics of MSE in pixels space

MSE in pixel space

Nominal Metrics

Nominal distance metrics of MSE in feature space

MSE in feature space

Learned Metrics

MSE in pixel space and RESISC-45 feature space not sufficient

Learned Metrics

- MSE in pixel space and RESISC-45 feature space not sufficient
- Metric learning with triplet loss function

Metric Learning with Triplet loss

Metric Learning with Triplet loss

First Results on Dataset in Indonesia

Dataset:

10 different locations, 3 different years

First Results on Indonesian Dataset

Difference between satellite image and drone images

Conclusion and Further Work

- Model with metric learning is able to distinguish truthfully reported imagery
 from untruthfully reported imagery
- Model evaluation on more training and testing data to ensure high reliability
- Protecting model from Adversarial perturbation
- Metric learning with images from different sources with different resolutions

Simona Santamaria* ssimona@ethz.ch David Dao* david.dao@inf.ethz.ch Björn Lütjens* lutjens@mit.edu Prof. Dr. Ce Zhang ce.zhang@inf.ethz.ch

