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Introduction

Renewable energy is rapidly integrated into the power grid to
prevent climate change.

Accurate forecasting of renewable generation becomes critical
for reliable power system operation.

However, forecasting always induces errors, and large-scale
batteries can be used to compensate forecasting errors.
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Introduction

[1 Traditional deep learning based forecasting methods
commonly aim to minimize the forecasting errors.

[J However, reducing errors does not necessarily imply
compensable errors.
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Error Compensable Forecasting (ECF)

[ Key ldea

® \We switch the objective of forecasting from reducing errors to
making compensable errors.

® The stored energy is affected by the previous forecasting result.

» We tackle this problem by leveraging reinforcement learning.

[1 Deep Reinforcement Learning
® Continuous Action Space
» An action is a continuous forecasted value
® Proximal Policy Optimization

» Simple to implement with outstanding performance
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A framework of ECF

Artificial Neural Network
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Transition to Next State s;,; (Charging / Discharging of Battery)
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1. Battery usage cost
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Experiment Results

Solar Power Wind Power
Maximum — Maximum
Generation Generation
=1 p.u. =1 p.u.
Battery Size = 0.25 p.u. |Battery Size = 0.5 p.u. Battery Size = 0.25 p.u. |Battery Size = 0.5 p.u.
BF ECF BF ECF BF ECF BF ECF

MAPE |[18.74% 10.08% [17.70% 0.13% | MAPE |[6.16% 1.21% 4.85% 0.20%

® Baseline Forecasting (BF): conventional deep learning-based forecasting

100 Compensated Real Output —Forecated value

o —_ —
MAPE = — D

0
Compensated Real Output [ /O]
® The proposed ECF far improves all the performances compared to the BF

® \When the battery size is 0.5 p.u., the MAPE becomes near zero
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