Deep Reinforcement Learning based Renewable Energy Error Compensable Forecasting

Jaeik Jeong and Hongseok Kim

Sogang University, Electronic Engineering

April 26, 2020

Introduction

- □ Renewable energy is rapidly integrated into the power grid to prevent climate change.
- Accurate forecasting of renewable generation becomes critical for reliable power system operation.
- ☐ However, forecasting always induces errors, and large-scale batteries can be used to compensate forecasting errors.

Introduction

☐ Traditional deep learning based forecasting methods commonly aim to minimize the forecasting errors.

 However, reducing errors does not necessarily imply compensable errors.

Error Compensable Forecasting (ECF)

- ☐ Key Idea
 - We switch the objective of forecasting from reducing errors to making compensable errors.
 - The stored energy is affected by the previous forecasting result.
 - » We tackle this problem by leveraging reinforcement learning.
- Deep Reinforcement Learning
 - Continuous Action Space
 - » An action is a continuous forecasted value
 - Proximal Policy Optimization
 - » Simple to implement with outstanding performance

A framework of ECF

Experiment Results

Solar Power

Maximum Generation = 1 p.u.

Wind Power

Maximum Generation = 1 p.u.

	Battery Size = 0.25 p.u.		Battery Size = 0.5 p.u.	
	BF	ECF	BF	ECF
MAPE	18.74%	10.08%	17.70%	0.13%

	Battery Size = 0.25 p.u.		Battery Size = 0.5 p.u.	
	BF	ECF	BF	ECF
MAPE	6.16%	1.21%	4.85%	0.20%

- Baseline Forecasting (BF): conventional deep learning-based forecasting
- $MAPE = \frac{100}{N} \sum \frac{Compensated Real Output Forecated value}{Compensated Real Output} [\%]$
- The proposed ECF far improves all the performances compared to the BF
- When the battery size is 0.5 p.u., the MAPE becomes near zero

Networking **Next**

Intelligence Innovative

Communications Creative

Energy Envisioning

