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Tropical Storm Prediction with RNN

e Dataset: National Hurricane Center vs. Grid-Based RNN
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Uncertainty Cones

o National Hurricane Center (NHC)
builds uncertainty cone such that
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Adding Uncertainty with Bayesian RNN

e Use dropout in both training and testing passes to model uncertainty (Gal,
Ghahramani 2016)
e Every forward pass in the testing/prediction phase results in a different

output
o Sample from a Bayesian approximation probabilistic distribution
o Evaluate the distribution of many predictions to give a Bayesian interval



Adding Uncertainty with Bayesian RNN

p(z,y | w)p(w) Posterior of weights is intractable
fp(s:, y | w) p(w)dw Assume Gaussian prior p(w) = N(0, 1)

p(w|z,y) =

p(y* | 2%, X,Y) = /p(y* |z, w)p(w | X,Y)dw Predictive distribution for new input point x*

. kY . Approximate predictive distribution
% (y” | 27) = /p(y |27, w)ge(w)dw Use g(w) as approximating variational
distribution and minimize KL(g(w)|p(w/X,Y))
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Experiments

e Implemented RNN model with dropout on predictions

e Experiments with 100 and 400 predictions at different levels of dropout

e Created intervals based on mean, standard deviation, and Z-score for each timestep. We used Z-
scores to represent intervals of 67%, 90%, 95%, 98%, and 99%.

e Using a dropout of 0.2, we show the true percentage of points within each of the interval bands
over every timestep of that sample

0.2 dropout test set | 67% | 90% | 95% | 98% | 99%
100 Latitude 61.1 | 82.0 | 87.0 | 90.9 | 93.0
400 Latitude 61.2 | 82.4 | 87.3 | 91.2 | 934

100 Longitude 66.3 | 84.3 | 88.6 | 92.2 | 93.9
400 Longitude 66.2 | 84.6 | 88.8 | 92.0 | 94.1
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Figure 7: Katrina latitude predictions

Figure 8: Katrina longitude predictions
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Figure 9: Katrina latitude intervals
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Figure 10: Katrina longitude intervals




