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Introduction

     Gas tungsten arc welding (GTAW) has been widely used
in industrial manufacturing, especially for some critical cas-
es such as pressure vessels and aerospace. In these critical

application cases, complete joint penetration is a basic re-
quirement to obtain high-quality weld joints. Generally, the
back-bead width is taken as the criterion of weld joint pene-
tration but is usually unavailable to sense in practical manu-
facturing due to the spatial limitation. To address this prob-
lem, some sensing methods, including spectral, infrared, au-
dio, arc voltage, vision, x-ray, and molten pool oscillation
sensing, have been developed to monitor the topside joint
penetration state and build a foundation for automatic and
intelligent control of welding processes.
     Li and Zhang (Ref. 1) proposed a method to measure the
arc length using a particular wavelength of arc light in
GTAW, and the accuracy of the experiments was about 0.2
mm for arc lengths in the range of 0.5 to 5 mm. Alfaro and
Franco (Ref. 2) presented an evaluation using an infrared
sensor to monitor the penetration of the weld pool and ana-
lyzed the defects through graphics and statistic methods. Lv
et al. (Ref. 3) established a prediction model using the statis-
tic features of the arc sound signal through artificial neural
networks to monitor the state of the weld pool in GTAW.
Zhang et al. (Ref. 4) proposed an arc voltage sensing method
to detect the penetration in pulsed GTAW (GTAW-P). The
results showed that the fluctuation amplitude of the arc
voltage can reflect the weld penetration status and a certain
threshold as the feature signal that judges the weld pool
state between incomplete joint penetration and complete
joint penetration. However, the accuracy of the arc voltage
sensing method was influenced by the experimental condi-
tions, such as the oscillation of the weld pool and arc stabili-
ty. Feng et al. (Ref. 5) proposed a method to quantify the
height between the weld pool surface and the reversed elec-
trode image and used a passive vision to capture the dis-
tance between the electrode tip and the virtual reversed
electrode image, arc length, and weld pool geometry to cal-
culate the surface height of the weld pool. This method has
been experimentally verified and applied to monitor the oc-
currence of complete joint penetration. Huang et al. (Ref. 6)
used spectral analysis based on data mining and empirical
mode decomposition to detect the porosity in alternating
current GTAW-P and used the x-ray analysis to verify that
the welding conditions affected the size and distribution of
pores. However, x-ray equipment is expensive and protec-
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tion against gamma radiation must be executed. Li et al.
(Ref. 7) used a photoelectric conversion chamber to analyze
the captured images in which an illumination laser with a
five-line pattern was projected onto the surface of the weld
pool. The voltage variation had a relationship with weld pool
oscillation, and the oscillation frequency of incomplete joint
penetration was higher than complete joint penetration
with an abrupt transition.
     Among these sensing methods, arc sound, infrared, x-ray,
spectral, and molten pool oscillation sensing are phenome-
nological methods where the data-driven mapping models
between sensed information and joint penetration state are
built. The physical theories behind these methods are un-
known or unclear. The other sensing methods, including arc
voltage and vision sensing, are developed based on physical
principles that complete joint penetration results in weld
pool surface concaving, which is preferred for practical ap-
plications. Compared with the arc voltage sensing method as
demonstrated by Zhang et al. (Ref. 8), where there is a single
information source and penetration state identification de-
pends on arc voltage dynamics instead of instantaneous val-
ue, vision sensing collects/uses abundant information. It is
also the main method for human welders perceiving welding
processes.
     The welding penetration state characterized as the back-
bead width of the weld joint needs to be monitored to apply
the optimal welding parameters (welding current, arc
length, traveling speed, etc.). In production, the backside of
the workpieces being welded is not available due to space
limitation and difficulty in synchronizing the torch and sen-
sor. Therefore, weld penetration state estimation from avail-
able information is the basis of this projection. In the weld-
ing process, the information provided by the weld pool has
been proven to be a useful source to predict weld penetra-
tion states. The weld pool surface is believed to contain suf-
ficient information to determine the weld penetration.
Many parameters of the weld pool profile as reported by
Zhang et al. (Ref. 9) can indirectly/directly indicate the pen-
etration status, such as the pool width, length, and surface
convexity, etc., so the topside surface information is signifi-

cant to represent the welding penetration process. Different
penetration states have different weld pool topside surfaces.
With this physical relationship as the foundation, the top-
side surface information of the weld pool can be used to de-
scribe the penetration state. The image information can be
applied to predict the penetration state.
     Vision-sensing methods used to identify the weld joint
penetration state include active and passive vision sensing
and have been studied extensively in previous research. An
innovative laser-vision-based sensing method was presented
by Shi et al. (Ref. 10) to measure the oscillation frequency in
GTAW, and the frequency was verified through experiments.
However, this method is only used to analyze the feasibility
of the extracted frequency by algorithm, but real-time moni-
toring and control need to be tested and demonstrated fur-
ther. This method was established through data-driven
mapping without the real physical principle to support it.
For passive vision, Liang et al. (Ref. 11) established a
biprism stereo vision system to sense and reconstruct the
surface of the weld pool. However, the reconstructed model
takes many calculations in real-time penetration sensing.
Compared with passive vision sensing, active vision sensing
can minimize interferences from the welding process, like
high-intensity arc brightness, spatter, and smoke, which
may destroy the effectiveness of the information sensed by
passive vision. By adding and capturing structured light
(usually a laser pattern) projected on the weld pool surface,
geometrical information about the weld pool surface is col-
lected. In previous studies, the characteristic features were
extracted first, and a mapping model was built between the
extracted features and joint penetration state as explained
by Zhang et al. (Ref. 12). The characteristic features are de-
fined and extracted artificially and are usually some simple
geometrical dimensions of the weld pool, such as length,
width, and height. The mapping models between the joint
penetration state and extracted features are designed artifi-
cially. The performance of such an approach depends greatly
on the designed characteristic features and models. In addi-
tion, some other useful information may be lost during pro-
cessing raw images. To address such issues, we propose to

Fig. 1 — System configuration: A — Sensing system configuration; B — experiment schematic diagram.
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use a single-stripe laser as the structured light to project on
the weld pool and implement the CNN to process the raw
images and then extract the useful features automatically.
This approach will decrease the intensity of human involve-
ment, and the automatically extracted features will keep
useful information as much as possible compared with tradi-
tional methods.
     The CNN, as demonstrated by Lecun et al. (Ref. 13) as
one of the most popular models to process grid-shape data,
has been frequently studied and successfully applied in nat-
ural language processing and computer vision, including im-
age or video recognition and image classification. In the
CNN, convolutional kernels are implemented to extract low-
level features, and full-connected layers are used to do high-
level reasoning. After being trained by large-volume data,
the CNN can learn useful features automatically, increasing
developmental efficiency.
     In the research area of CNNs, some great contributions
have been made that effectively promoted the develop-
ment of CNNs. LeCun et al. (Ref. 14) presented the first
CNN and defined the basic structure. The resultant LeNet
structure was applied in written character recognition,
which was deployed commercially in business and personal
checks. However, this model was not popular in the follow-
ing years because other algorithms, such as support vector
machines, can often achieve better results. AlexNet, devel-
oped by Krizhevsky et al. (Ref. 15), prompted the populari-
ty of CNNs again, and its contribution reflected new char-
acteristics such as rectified linear unit (ReLU) active func-
tion, dropout, overlapping max pooling, local response

normalization, graphics processing unit acceleration, and
data augmentation. Afterward, Zeiler and Fergus (Ref. 16)
developed ZF Net to optimize the classification of Ima-
geNet by adjusting parameters but not improving the net-
work structure. With the development of CNNs, its struc-
ture became deeper. The visual geometry group at the Uni-
versity of Oxford proposed the VGG Nets as reported by Si-
monyan and Zisserman (Ref. 17), which pushed the depth
to 16–19 weight layers. GoogLeNet, which was presented
by Szegedy et al. (Ref. 18), improved the utilization of the
computing resources and, meanwhile, obtained a top-5 er-
ror of 6.67% on both the validation and testing data. With
the depth of the neural network layer increasing, comput-
ing resources were largely occupied, and even the training
process could not be executed using current computer
hardware. To resolve this problem, ResNet, developed by
He et al. (Ref. 19), presented a residual learning framework
to ease the training of networks, gain accuracy from con-
siderably increased depth, and achieve 3.57% error on the
ImageNet test set.
     This paper presents a novel active vision system that can
identify the weld joint penetration state based on the CNN
model. Firstly, experimental procedures are presented here,
where images of the front and backside weld pool correspon-
ding to different penetration states were collected as the
dataset. Then, principles including the weld penetration
analysis and reflection modes are introduced. The structure
of the CNN is established, and a data augmentation method
is proposed to expand the dataset. Finally, the accuracies
with different parameters are analyzed.

Fig. 2 — Images illustrating the vision-sensing structure. A — Topside image of weld pool; B — backside image of weld pool.
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Fig. 3 — Topside and backside images to establish the dataset. A — Topside images; B — backside images.
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Experimental Procedures

Experimental System

     A series of experiments were performed using GTAW to ac-
quire the dataset. The diagram of the experiment platform is
shown in Fig. 1A, including the welding system, motion sys-
tem, and vision-sensing system. GTAW experiments were con-
ducted using the parameters listed in Table 1 with the power
supplied from a Miller Maxstar 210 welding power source
and 99.99% pure argon as the shielding gas. The motion sys-
tem was driven by a step motor, which allows the workpiece to
move along one dimension. As shown in Fig. 1B, the vision-
sensing system included a 50-mW/685-nm single-stripe laser
generator, an imaging plane, and two Point Grey charge-cou-
pled device cameras whose modes are FL3-FW-03S1C and
FL3-FW-20S4C-C with 685-nm filters to sense the informa-

tion of the topside and backside of the weld pool. Both the mo-
tion and vision-sensing systems were controlled through a
computer with a National Instruments PCI-6229 data acquisi-
tion card using a Python environment to capture the im-
ages, control the current and time of the welding power, and
move the workpiece.
     During the welding process, the single-stripe laser was pro-
jected on the topside center of the weld pool and continuously
reflected by the weld pool, whose topside surface is like a mir-
ror. The reflected pattern was captured by a camera and char-
acterizes the dynamic surface of the weld pool. The second
camera was configured to monitor the backside surface of the
weld pool synchronously where the captured images depend
on the radiation of the weld joint and characterize the joint
penetration state. A pair of typical images captured with the
synchronously triggered cameras is shown in Fig. 2, in which
the red circle of the backside images is calibrated for the
brightness area through a certain threshold value. Hence, we
can quantify the information from the backside image.

Data Collection

     Using the welding parameters in Table 1, welding experi-
ments were conducted with the images of the topside and
backside as shown in Fig. 3. The macroscopic surfaces of the
welded workpieces during different times are illustrated in
Fig. 4. For the backside images, the brightness area of the
image represents the weld pool state and its computable val-
ue at the given time. Thus, at each particular time, a com-
putable value can sufficiently demonstrate one-to-one 

Fig. 4 — Macroscopic surfaces of welded workpieces at different times: A — 1 s; B — 2 s; C — 3 s; D — 4 s; E — 5 s; F — 6 s;
G — 7 s; H — 8 s.

Table 1 — Welding and Sensing Parameters

                  Parameters                                  Type/Value

                     Material                                          304L
               Thickness (mm)                                     1.85
                 Welding Type               Direct Current Electrode Negative
            Welding Current (A)                                  60
                 Shielding Gas                                     Argon
              Gas Flow (L/min)                                      7
              Arc Length (mm)                                     4.8
  Image Sampling Frequency (fps)                         20

A B

C D

E F

G
H
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correspondence with a topside image (a specific penetration
state). The quantized penetration information can be deliv-
ered to the topside image by calculating the brightness area
of the backside image. Therefore, the backside images
served as the labels of topside images in the training model.
     The real images of the topside and backside of the weld
pool are shown in Fig. 2. For the backside image of the weld
pool, first, the images were processed using the binary
method in which the threshold value was set as 50, and the
example of a backside image is shown in Fig. 2B in which the
area has been drawn with a red circle. Then, we defined the
area in the circle was used as the label for a synchronous
topside image. During the calibration process, we used the
area that is the number of all pixels in the red circle as the
judging criteria. We defined the average value of the circle
area via three repetitive welding experiments in 7 s as the
designed penetration, and the average value was approxi-
mately 61 pixels (1728 pixels per image). The average area
percentage, which was calculated using the equation (target
pixels/all pixels)  100%, was about 3.515%. In the welding
process, if the number of pixels exceeds the area, we predict
that the designed penetration occurs.
     For arc spot welding, the penetration state transformed
in sequence among incomplete joint penetration,
complete joint penetration, and excessive penetration ac-
cording to the welding time increasing. Figure 4A–H, with

three repetitive welding experiments, shows the macroscop-
ic surfaces of the weld pool during the welding time from 1
to 8 s in 1 s increments. In every part image, the left image
is the topside surface and the right image is the backside of
weld pool. The backside weld pool width of the designed or
desired penetration state in 7 s is shown in Fig. 4G.

Principles

Dynamic Analysis of Welding Penetration

     In one spot welding cycle, the penetration state shown in
Fig. 5 changed from incomplete, critical, complete, to excessive
joint penetration corresponding to the different geometrical
profiles of the weld pool surface and different reflected laser
patterns. We can observe that the reflected laser single stripe
in the imaging plane, the top surface of weld pool, and the
cross section are demonstrated in Fig. 5A–F. The imaging
plane was used to receive the reflected laser from the weld
pool. The diameters of the orange circle and black circle in the
middle image of every part are the weld pool widths of the top-
side and backside, respectively. The cross sections of different
penetration states show the evolution process of the weld
pool. Before one spot welding cycle started, the camera cap-
tured the fully diffused reflection of the laser in the imaging
plane due to the solid surface of the workpiece. When the weld
pool started to form and grow, the top surface of the molten
metal liquid was specular and became convex due to thermal
expansion. As shown in Fig. 5A, the laser stripe curved after
the specular reflection by the convexity of the molten metal
liquid. With the metal heated continuously, the size of the
weld pool increased such that the convexity and area of the
molten metal increased. This resulted in the size of the reflect-
ed laser stipe increasing continuously in length and height and
reaching critical penetration as shown in Fig. 5B. In the critical
penetration state, the backside of weld pool began to increase.
After passing critical penetration, the convex molten metal in
the backside started to affect the top surface of the weld pool
and the shape of the reflected laser stripe. While the thermal

Fig. 5 — Dynamic penetration in the GTAW process (the single-stripe shape in different penetrations): A — Incomplete joint pene-
tration; B — critical penetration; C, D, E — complete joint penetration; F — excessive penetration.

A B C D E F

Fig. 6 — Dynamic evolution of the weld pool surface in GTAW.
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expansion of the weld pool tended to increase the convexity of
the weld pool surface in the topside, the molten metal drop-
ping in the backside tended to decrease that. In the beginning,
the former factor dominated such that the length and height
of the reflected laser stripe still increased as shown in Fig. 5C.
Then, the latter dominated this dynamic change so that both
the length and height of the laser stripe decreased as shown in
Fig. 5D where the weld pool surface on the topside began to
transfer from convexity to concavity. With the heat input in-
creasing, because at some point the topside surface concavity
of the weld pool focused the single stripe to form it as shown
in Fig. 5E, the reflected single-stripe curve in the imaging
plane became a focal point, like a concave mirror reflects light
inward to one focal point. Finally, in the excessive penetration
state as shown in Fig. 5F, the topside weld pool surface con-
caved significantly, and then the focal point from the imaging
plane moved closer to the weld pool. Hence, the reflected laser
stripe in the imaging plane became much longer than that in
Fig. 5E, which is addressed and explained in detail in the Re-
flection Modes section.
     Figure 6, as demonstrated by Li et al. (Ref. 20), illustrates
the dynamic change in the geometry of the weld pool surface
on both sides in GTAW during the increase of weld penetra-
tion. The topside convexity evolved and then shrunk when the
workpiece changed from incomplete joint penetration to com-
plete joint penetration, and backside convexity evolved in the
complete joint penetration stage. The maximum height value
of the topside convexity did not occur in the critical-penetra-
tion stage because the melting metal volume per second was
still larger than the liquid metal volume flowing to the back-
side. When both volumes balanced dynamic equilibrium, the
height of the topside convexity reached the maximum value
exactly as a stage in Fig. 5C and the red point in Fig. 6.

Reflection Modes

     As shown in Fig. 7A–D, both the convex and concave re-
flection modes occured as determined by the geometrical

profiles of the weld pool topside surface. When the weld
pool surface was convex due to thermal expansion of the
molten metal, the convex reflection mode occurred in Fig.
7A and C. When the molten metal dropping in the backside
dominated over the thermal expansion, the concave mode
occured as shown in Fig. 7B and D. The two reflection
modes are described as follows: According to the reflection
principle, the projected laser is reflexed to a different direc-
tion according to the variation surface of the weld pool, and
the imaging plane can capture and show the changing re-
flected single stripe that represents the penetration infor-
mation. The topside surfaces of the weld pool in Fig. 7A and
B are convex and concave, respectively. For the convex re-
flection mode in Fig. 7A and the concave reflection mode in
Fig. 7B, three main points have been demonstrated to de-
scribe the reflection principle of the weld pool. When the
metal was heated by the thermal arc, the topside of the weld
pool generated a convexity due to the expansion of metal
from solid to liquid in the incomplete joint penetration
process. Meanwhile, the central reflection of the b point in
the weld pool surface in Fig. 7C transfered to the top-right
corner b1 point, and the b’ point in the reflected imaging
plane of Fig. 7C transfered to the b2 point in comparison
with the nonmelted plate surface, so an arc-shaped curve
appeared in the plane. Afterward, when the molten metal
transferred to the backside of the plate, the topside of the
weld pool generated a concavity during complete joint pene-
tration or excessive penetration. In the meantime, the cen-
tral reflection b point in Fig. 7D transferred to the bottom-
left corner b1 point in comparison with the nonmelted plate
surface, and the b’ point in the reflected imaging plane of
Fig. 7D transfered to the b2 point, so an arc-shaped curve
appeared in the plane. The two curves, in which the topside
surface information was captured to demonstrate the fea-
tures including the penetration state, were different due to
the convex and concave reflected modes. Therefore, the re-
flected single stripe in the imaging plane presented the pen-
etration information directly and efficiently.

Table 2 — The Parameters of the CNN Model

  Layer Number        Layer Type              Method       Kernel Size      Kernel Number       Input Shape      Output Shape             Parameters

             1                  Convolution                 Dot               5  5                   128                   48  36              44  32                      3328
                                                              Product                                                                                                                               
                                 Activation                 ReLU                —                       —                    44  32              44  32                         0

            2                     Pooling                    Max               2  2                   128                   44  32              22  16                          0
                                                                Pooling                                                                                                                               
                                                                                                                                                                                                           
            3                   Convolution                 Dot          3  3  128               128                    22  16                                  20  14                      147584
                                                                Product                                                                                                                              
                                  Activation                 ReLU                —                       —                     20  14               20  14                          0 

            4                      Pooling                     Max             2  2                   128                    20  14                10  7                           0
                                                                 Pooling                                                                                                                              
                                    Flatten                       —                 —                      128                     10  7                  8960                           0
                                                                                                                                                                                                           
            5                Full-Connected                 —                 —                      128                     8960                   128                        1147008
                                  Activation                  ReLU              —                       —                        128                     128                             0

            6                 Full-Connected                 —                 —                       1                         128                       1                             129
                                   Activation                Sigmoid            —                       1                           1                         1                               0
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Results and Discussion

CNN Model

     The result of this study is an effective model that can
process the active vision images to classify the state of the
weld penetration. This is a trained CNN model with three
main layers that are the convolutional with ReLU, pooling,
and full-connected layers, which were used to build the pro-
posed CNN architectures as shown in Fig. 8 and Table 2. A
benefit of using the Keras software library is that it is built
on top of symbolic mathematical libraries for fast and effi-

cient computation. A Keras sequential model that is a high-
level neural network was selected as the linear stack of lay-
ers. It has three backend implementations available that are
TensorFlow, Theano, and Microsoft Cognitive Toolkit. The
TensorFlow backend developed by Google was selected in
this model to complete data training and testing.
     The convolution layer is a key part of the convolutional
network, which computes dot products between the filter
and the input. When we slid the filter over the width and
height of the input volume through a certain method, two-
dimensional mapping was produced, and we stacked these
mappings along the depth dimension to produce the output
volume. The specific calculation principle of the convolution

Fig. 7 — Two reflection modes: A, C — Convex reflection mode; B, D — concave reflection mode.

A B

C D

Fig. 8 — CNN architecture.
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layer is shown as follows:

      X = f(wixi + b) (1)

      Wout = (Win – F + 2P)/S + 1 (2)

where Wout and Win are the width of the output and input vol-
ume, respectively; F is the filter size (kernel size); P is the zero
padding; and S is the stride. The formula in Equation 1 calcu-
lates the weight and height of the image; the convolutional
layer output is X. For this paper, padding type was set as the
“valid,” in which no zero padding in two convolution layers was
used such that the output had the length and weight as shown
in Fig. 8. Hence, the outputs of the two convolutional layers
calculated using Equation 2 are a 44  32 grid of nodes with
128 channels and a 20  14 grid of nodes with 128 channels,
respectively.
     The pooling layer, which classifies as max pooling, mean
pooling, and stochastic pooling, was periodically inserted after
the convolution layer and performed a down-sampling opera-
tion along spatial dimensions with width and height. The max-

pooling layer was selected in this structure to progressively re-
duce the spatial size and overfitting. Meanwhile, it reduced the
number of parameters and computations in the network. The
operation of max pooling is selecting a max value among the
filter area and doesn’t change the size of the depth dimension.
In this work, filters of size 2  2 were applied to every depth
slice of the input with a stride of two steps along both width
and height using the max-pooling operation. The input vol-
ume of sizes Win  Hin  Din in Equation 3 were generated as the
output volume of sizes Wout  Hout  Dout that is defined in Equa-

Fig. 9 — Data argumentation: A — Original image; B — horizontal flip; C — Gaussian noise; D — salt-and-pepper noise.

A B

C D

Fig. 10 — CNN model optimization of kernel numbers. Fig. 11 — CNN model optimization of kernel sizes.

Table 3 — The Kernel Size in Two Convolutional Layers

 Layer No.                     1-Convolutional                      2-Convolutional
                                            Layer                                     Layer

       #1                                  3  3                                     3  3
      #2                                 3  3                                     5  5
      #3                                 5  5                                     3  3
      #4                                 5  5                                     5  5
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tion 4, respectively, where two hyperparameters are spatial ex-
tent F and stride S. Hence, the outputs of two pooling layers
were a 22  16 grid of nodes with 128 channels and a 10  7
grid of nodes with 128 channels, respectively.

      Wout = (Win – F)/S + 1 (3)

      Hout = (Hin − F)/S + 1 (4)

      Dout = Din (5)

     Neurons have full connections to the activations of the pre-
vious layer in a full-connected layer. In this research, the out-
put from the final pooling layer was a 10  7 grid of nodes with
128 channels, which executed the flatten operation, and the
output was one dimension with 8960 nodes. When the first
full-connected layer was operated with 128 channels, the out-
put was also one dimension with 128 nodes, and the whole pa-
rameters in this layer were 1,147,008 per training sample. For
the second full-connected layer, the value was set as 1 node to
implement the binary classification between complete joint
penetration (designed penetration) and incomplete joint pene-
tration.
     The activation function is ReLU in Equation 6, which de-
fined the positive part of its argument. The sigmoid function
is a special case of the logical function, which is defined in
Equation 7. A flatten operation reshaped the data to have a
one-dimensional shape that was equal to the number of ele-
ments contented in the two-dimensional shape. As demon-

strated by Kingma and Ba (Ref. 21), the optimizer was set to
Adam, which is an adaptive learning rate optimization algo-
rithm that has been designed for the deep learning network.

      f(x) = max(0, x) (6)

      S(x) = 1/1 − e−x (7)

Data Augmentation and Image Resizing

     To increase robustness and decrease the risk of overfitting,
the training dataset was augmented by using a horizontal flip
and adding noise, such as Gaussian and salt-and-pepper noise,
to boost the original images. For the horizontal flip, the origi-
nal images were flipped in the horizontal direction as shown in
Fig. 9B. For the Gaussian and salt-and-pepper noise, the per-
centage of the image noise area was set to 0.05 for the original
images as shown in Fig. 9C and D. The size of the original and
augmentation images was 640  480, which is large and in-
creased the computational cost for training, so the input im-
ages were resized to 48  36 at the same ratio. The total images
through augmentation of these three methods using the origi-
nal number of 15,627 images was expended to 62,508 to form
the database. The training, validation, and test database were
50,633, 5625, and 6250, respectively, using a random alloca-
tion method. Finally, the resized data transmitted to the con-
volutional neural network to train the model.

Model Optimization

     The model training is based on the Keras library with
Python programming language, which is a popular library
for deep learning and ran on a personal computer with an
Intel® CoreTM i7-6700 processor and 16G memory for 20
epochs, which was the number of trained times with all sam-
ples in the training dataset. In the training process, the param-
eter optimization was the key issue to improve the perform-
ance of the designed CNN model. Due to so many parameters
in the model, some core parameters were designed and con-
ducted to verify the stability and improve accuracy. The pa-
rameters, including kernel number and size, dense size, and
dropout, were selected. The plot in Fig. 10 depicts the valida-
tion accuracy and loss, in which kernel numbers were set to
32, 64, and 128. The results show that 128 had a better per-
formance than other values. The plot in Fig. 11 shows the vali-

Fig. 12 — CNN model optimization of dense sizes. Fig. 13 — CNN model optimization of dropout.

Fig. 14 — The training, validation, and test performance in the
CNN model.
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dation accuracy and loss, in which kernel sizes were set in
Table 3. The results show that two convolutional layers had a
better performance when kernel sizes were set as 5  5 and 3 
3 in two convolutional layers, respectively. The plot in Fig. 12
depicts that validation accuracy and loss performed well when
the dense size was 128. The plot in Fig. 13 shows that valida-
tion accuracy and loss performed well when the dropout was
not added in the model. The plot in Fig. 14 shows that accura-
cy and loss of training, validation, and test performed well, in
which all the prediction accuracies were approximately 98%.
Hence, the six-layer CNN gives us about 98% prediction accu-
racy to identify the penetration statuses of the weld pool in
the GTAW process.

Conclusion

     This paper presents a novel active vision-sensing system
based on convolutional neural networks to identify the weld
penetration state in the GTAW process.
     1) An active laser vision-sensing system was designed to
capture the feature information of the weld pool surface. The
two reflection modes, which are the convex and concave re-
flection modes, correspond to different penetration states.
These were verified as the fundamentals of the proposed ma-
chine learning method.
     2) A six-layer CNN model that included two convolutional
layers, two pooling layers, and two full-connected layers was
designed. Images of the reflected laser stripe from the weld
pool were collected and trained to identify the weld joint pene-
tration state. A data argument method was proposed to
tremendously expand the dataset for more accurate training.
     3) The verification and test results show that the optimized
CNN achieved an accuracy of about 98% for identifying the
weld penetration state. The proposed CNN model provides a
potential active-image-based approach for online penetration
monitoring of the GTAW process.
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